Name:

Directions: Solve the following problems. Give supporting work/justification where appropriate.

1. [6 parts, 1 point each] Define the following statements and open sentences.

P : For each $z \in \mathbb{R}$, we have $z^2 \ge 0$.	$Q(x): x \in \mathbb{Z}.$
R(x): x is an even integer.	S(A): A is a finite set.

Decide whether the following are true or false; indicate your answer by writing the entire word "true" or the entire word "false". Give brief justifications for partial credit.

(a) $\sim P$

(b) $S(\mathcal{P}(\mathbb{R}) \cap \mathbb{R})$

(c) $R(3) \Rightarrow S(\mathbb{Z})$

(d)
$$\sim Q(0) \wedge P \wedge R(6)$$

(e) For all x, we have $R(x) \Leftrightarrow Q(\frac{x}{2})$.

(f) $(\sim (S(\emptyset) \Rightarrow R(1))) \lor (P \land S(\mathbb{R}^2))$

- 2. [2 parts, 1 point each] Truth tables and logical equivalence.
 - (a) Write a truth table for $(P \lor Q) \Rightarrow (P \land Q)$.

- (b) Give a simple statement which is logically equivalent to $(P \lor Q) \Rightarrow (P \land Q)$.
- 3. [2 parts, 1 point each] Let P, Q, and R be statements. Use the logical operands to express the following statements.
 - (a) P and Q have the same truth value, but R has the opposite truth value.

(b) If at least two of the statements in $\{P, Q, R\}$ are true, then so is the third.