Name: \qquad
Directions: Solve the following problems. Give supporting work/justification where appropriate.

1. [6 parts, 1 point each] Define the following statements and open sentences.
$P:$ For each $z \in \mathbb{R}$, we have $z^{2} \geq 0 . \quad Q(x): x \in \mathbb{Z}$.
$R(x): x$ is an even integer. $S(A): A$ is a finite set.
Decide whether the following are true or false; indicate your answer by writing the entire word "true" or the entire word "false". Give brief justifications for partial credit.
(a) $\sim P$
(b) $S(\mathcal{P}(\mathbb{R}) \cap \mathbb{R})$
(c) $R(3) \Rightarrow S(\mathbb{Z})$
$(\mathrm{d}) \sim Q(0) \wedge P \wedge R(6)$
(e) For all x, we have $R(x) \Leftrightarrow Q\left(\frac{x}{2}\right)$.
$(\mathrm{f})(\sim(S(\varnothing) \Rightarrow R(1))) \vee\left(P \wedge S\left(\mathbb{R}^{2}\right)\right)$
2. [2 parts, 1 point each] Truth tables and logical equivalence.
(a) Write a truth table for $(P \vee Q) \Rightarrow(P \wedge Q)$.
(b) Give a simple statement which is logically equivalent to $(P \vee Q) \Rightarrow(P \wedge Q)$.
3. [2 parts, 1 point each] Let P, Q, and R be statements. Use the logical operands to express the following statements.
(a) P and Q have the same truth value, but R has the opposite truth value.
(b) If at least two of the statements in $\{P, Q, R\}$ are true, then so is the third.
