Name:
Directions: Solve the following problems. Give supporting work/justification where appropriate.

1. [4 parts, 1 point each] Let $I=\{\alpha \in \mathbb{R}: \alpha \geq 0\}$, and let $A_{\alpha}=\left\{(x, y) \in \mathbb{R}^{2}: y \geq \alpha x\right\}$ for each $\alpha \in I$. Sketch the following sets, using dashed lines to denote boundaries that are omitted.
(a) $I_{0}$
(b) $I_{2}$
(c) $\bigcap_{\alpha \in I} A_{\alpha}$
(d) $\bigcup_{\alpha \in I} A_{\alpha}$
2. [1 point] Let $A$ be the set of all real numbers that are at distance at most $\frac{1}{3}$ from some integer. For example, $A$ contains $7, \frac{1}{4}$, and $\frac{2}{3}$, but $A$ does not contain $\frac{1}{2}$ or $\frac{7}{5}$. Express $A$ as an indexed union.
3. [5 parts, 1 point each] Determine whether or not the following are statements. In the case of a statement, say whether the statement is true or false.
(a) It is easier to differentiate a function than it is to integrate it.
(b) If $A$ and $B$ are nonempty finite sets, then $|A \cup B|>|A|$.
(c) For all real numbers $x$, we have $-1 \leq \sin (x) \leq 1$.
(d) $\mathcal{P}(\mathbb{N}) \cup(\mathbb{R} \times \mathbb{Q})$.
(e) Every set has at least two distinct subsets.
