Name: Solutions

Directions: Solve the following problems. Give supporting work/justification where appropriate.

1. [4 parts, 1 point each] Let $I = \{\alpha \in \mathbb{R} : \alpha \geq 0\}$, and let $A_{\alpha} = \{(x,y) \in \mathbb{R}^2 : y \geq \alpha x\}$ for each $\alpha \in I$. Sketch the following sets, using dashed lines to denote boundaries that are omitted.

(c) $\bigcap_{\alpha \in I} A_{\alpha}$

(d) $\bigcup_{\alpha \in I} A_{\alpha}$

2. [1 point] Let A be the set of all real numbers that are at distance at most $\frac{1}{3}$ from some integer. For example, A contains 7, $\frac{1}{4}$, and $\frac{2}{3}$, but A does not contain $\frac{1}{2}$ or $\frac{7}{5}$. Express A as an indexed union.

$$A = \bigcup_{\alpha = 1, \alpha + 3} \left[\alpha - \frac{1}{3}, \alpha + \frac{1}{3} \right]$$

- 3. [5 parts, 1 point each] Determine whether or not the following are statements. In the case of a statement, say whether the statement is true or false.
 - (a) It is easier to differentiate a function than it is to integrate it.

Not a statement, (matter of opinion) * Also accepted:

(b) If A and B are nonempty finite sets, then $|A \cup B| > |A|$.

That value depends on A and B.

FALSE Statement If $B \subseteq A_a$ then $(Say, B = \emptyset)$, Then $|A \cup B| = |A|$.

(c) For all real numbers x, we have $-1 \le \sin(x) \le 1$.

(d) $\mathcal{P}(\mathbb{N}) \cup (\mathbb{R} \times \mathbb{Q})$.

THE PARTY

Not A statement (It is a set)

(e) Every set has at least two distinct subsets.

FALSE Statement The empty set & has only one subset (itself)