Name: \qquad
Directions: Solve the following problems. Give supporting work/justification where appropriate.

1. [2 parts, 1 point each] Express the following sets using a list between braces, using the ellipses if necessary.
(a) $\left\{\frac{n}{2}: n \in \mathbb{N}\right\}$
(b) $\{(x, y): x, y \in \mathbb{Z}$ and $x+y=0\}$
2. [4 parts, 1 point each] Determine whether the following sets are infinite or finite. If the set is finite, then determine its cardinality.
(a) $\{\{1,2,(3,4)\}\}$
(b) $\{\mathbb{Q}\}$
(c) $\{x \in \mathbb{R}: 0<x<1\}$
(d) $\{\varnothing,\{ \},(0,1),(1,0)\}$
3. [2 parts, 1 point each] Use set-builder notation to express the following sets in a compact way.
(a) $\{1,2,4,8,16,32,64, \ldots\}$
(b) The set of all points (x, y) in the interior of the square with vertices $(0,0),(0,1),(1,0)$, and $(1,1)$.
4. [2 parts, 1 point each] Sketch the following sets of points in the x, y-plane \mathbb{R}^{2}. Use dashes to denote boundaries that are excluded from the set.
(a) $\left\{(x, y) \in \mathbb{R}^{2}: 1 \leq x^{2}+y^{2}<4\right\}$
(b) $\left\{(x, y) \in \mathbb{R}^{2}: x+y \in\{-1,1\}\right\}$
