Directions: You may work to solve these problems in groups, but all written work must be your own. Unless the problem indicates otherwise, all problems require some justification; a correct answer without supporting reasoning is not sufficient. Submissions must be stapled. See "Guidelines and advice" on the course webpage for more information.

- 1. Prove the following using the method of proof by contradiction.
 - (a) Show that $2^{\frac{1}{3}}$ is irrational.
 - (b) Suppose that $a, b, c \in \mathbb{Z}$. Show that if $a^2 + b^2 = c^2$, then a or b is even.
 - (c) Prove that there are no integers a and b such that 21a + 30b = 1.
- 2. Irrational powers of three.
 - (a) Let a be an integer. Prove that if $3 \mid a^2$, then $3 \mid a$.
 - (b) Prove that if k is an odd positive integer, then $\sqrt{3^k}$ is irrational. Hint: suppose for a contradiction that the implication is false for some values of k, and let k be the least odd positive integer for which the implication fails.
- 3. Identities.
 - (a) Give a combinatorial proof of the identity $\sum_{k=1}^{n} k(n-k) = \binom{n+1}{3}$.
 - (b) Use part (a) to derive a closed-form formula for $\sum_{k=1}^{n} k^2$.
- 4. Using only logic and trigonometry (not calculus), show that $\sin(x) + \sqrt{3}\cos(x) \le 2$ for each real number x. (Hint: recall that $\tan(\pi/3) = \sqrt{3}$.)
- 5. Critique the following argument. (Be careful!)

Theorem 1. If p_1, \ldots, p_k is a list of the first k primes, then $p_1p_2 \cdots p_k + 1$ is also a prime.

Proof: Let $n = p_1 p_2 \cdots p_k + 1$, and note that $1 = n - p_1 p_2 \cdots p_k$.

Suppose for a contradiction that some prime p_i less than n divides n. If this were true, then p_i divides both terms on the right hand side of $1 = n - p_1 p_2 \cdots p_k$ and therefore p_i must also divide the left hand side of this equation. Since no prime divides 1, we have a contradiction.

The contradiction implies that no prime less than n divides n, and therefore n is prime.