Directions: You may work to solve these problems in groups, but all written work must be your own. Unless the problem indicates otherwise, all problems require some justification; a correct answer without supporting reasoning is not sufficient. Submissions must be stapled. See "Guidelines and advice" on the course webpage for more information.

- 1. Use the method of contrapositive proof to prove the following.
 - (a) If n is an integer and n^2 is odd, then n is odd.
 - (b) If $x \in \mathbb{R}$ and $x^3 x > 0$, then x > -1.
 - (c) Suppose that $x, y, z \in \mathbb{Z}$ and $x \neq 0$. If $x \nmid yz$, then $x \nmid y$ and $x \nmid z$.
 - (d) If a is an integer and $4 \nmid a^2$, then a is odd.
- 2. Give either a direct proof or a contrapositive proof of each of the following.
 - (a) If $a, b \in \mathbb{Z}$ and a and b have the same parity, then 3a + 7 and 7b 4 do not.
 - (b) Suppose $a, a', b, b', m \in \mathbb{Z}$ and $m \geq 1$. If $a \equiv a' \pmod{m}$ and $b \equiv b' \pmod{m}$, then $ab \equiv a'b' \pmod{m}$.

Comment: this says that when computing ab modulo m, we are free to replace a and b with integers a' and b' of our choice, provided that a' is congruent to a and b' is congruent to b.

- (c) For all $a, b \in \mathbb{Z}$, we have $(a+b)^3 \equiv a^3 + b^3 \pmod{3}$.
- (d) If $n \in \mathbb{Z}$, then $4 \nmid (n^2 3)$.
- 3. Forced division.
 - (a) Prove that for each $n \in \mathbb{N}$, there exist nonnegative integers r and s such that s is odd and $n = 2^r s$
 - (b) Show that for each $n \in \mathbb{N}$, the expression for n obtained in part (a) is *unique*. That is, prove that if $n = 2^{r_1}s_1$ and $n = 2^{r_2}s_2$ where r_1 and r_2 are nonnegative integers and s_1 and s_2 are odd integers, then $r_1 = r_2$ and $s_1 = s_2$.
 - (c) Use part (a) to prove that if $A \subseteq \{1, 2, \dots, 2m\}$ and |A| > m, then there exist integers $b, c \in A$ such that $b \mid c$.