Directions: You may work to solve these problems in groups, but all written work must be your own. Unless the problem indicates otherwise, all problems require some justification; a correct answer without supporting reasoning is not sufficient. Submissions must be stapled. See "Guidelines and advice" on the course webpage for more information.

- 1. Proof critiques. Give a critique of each claimed proof below. A proof critique addresses the following questions: (1) Is the proof correct? (2) If correct, can the proof be improved in some way? (3) If incorrect, what is/are the error(s)? Can they be fixed, and if so, how?
 - (a) **Theorem 1.** If x and y are real numbers, then $\frac{x+y}{2} \ge \sqrt{xy}$.

Proof:

$$\frac{x+y}{2} \ge \sqrt{xy}$$

$$x+y \ge 2\sqrt{xy}$$

$$(x+y)^2 \ge 4xy$$

$$x^2 + 2xy + y^2 \ge 4xy$$

$$x^2 - 2xy + y^2 \ge 0$$

$$(x-y)^2 \ge 0$$

(b) **Theorem 2.** All real numbers are equal.

Proof: Let x and y be real numbers. Observe that

$$x^{2} - y^{2} = (x - y)(x + y) = x(x + y) - y(x + y).$$

After rearranging terms, this becomes $x^2 - x(x+y) = y^2 - y(x+y)$. Adding $\frac{(x+y)^2}{4}$ to both sides gives $x^2 - x(x+y) + \frac{(x+y)^2}{4} = y^2 - y(x+y) + \frac{(x+y)^2}{4}$. Factoring both sides, we see that $(x - \frac{x+y}{2})^2 = (y - \frac{x+y}{2})^2$ and taking the square root gives $x - \frac{x+y}{2} = y - \frac{x+y}{2}$. Adding $\frac{x+y}{2}$ to both sides gives x = y. Since x and y were arbitrarily chosen real numbers, it follows that all real numbers are equal.

(c) **Theorem 3.** If $n \in \mathbb{Z}$, then $n^2 = 3k$ or $n^2 = 3k + 1$ for some $k \in \mathbb{Z}$.

Proof: Suppose that $n \in \mathbb{Z}$. By the division algorithm, it follows that n = 3q + r for some integers q and r with $0 \le r < 3$. Since r is an integer and $0 \le r < 3$, it follows that $r \in \{0, 1, 2\}$. We consider three cases, depending on the value of r.

Case 1: If r = 0, then $n^2 = (3q + 0)^2 = 9q^2 = 3(3q^2)$, and so $n^2 = 3k$ when we set k equal to the integer $3q^2$.

Case 2: If r = 1, then $n^2 = (3q + 1)^2 = 9q^2 + 6q + 1 = 3(3q^2 + 2q) + 1$, and so $n^2 = 3k + 1$ when we set k equal to the integer $3q^2 + 2q$.

Case 3: If r = 2, then $n^2 = (3q + 2)^2 = 9q^2 + 12q + 4 = 3(3q^2 + 4q + 1) + 1$, and so $n^2 = 3k + 1$ when we set k equal to the integer $3q^2 + 4q + 1$.

In all cases, we have that $n^2 = 3k$ or $n^2 = 3k + 1$ for some integer k.

(d) **Theorem 4.** Let $a, b, c \in \mathbb{Z}$. If $a \mid b$ and $b \mid c$, then $a \mid c$.

Proof: Since $a \mid b$, we have that b = ka for some integer k. Similarly, since $b \mid c$, it follows that c = kb for some integer k. Therefore $c = kb = k(ka) = k^2a$. Since k^2 is an integer, it follows that $a \mid c$.

- 2. Prove that if x is an odd integer, then x^3 is odd.
- 3. Prove that if x and y are integers and x is even, then xy is even.
- 4. Prove that if $n \in \mathbb{Z}$, then $5n^2 + 3n + 7$ is odd. Hint: try cases.
- 5. An integer p is *prime* if $p \ge 2$ and the only positive divisors of p are 1 and p. Prove that if n is a positive integer, $n \ge 2$, and n is not prime, then $2^n 1$ is not prime.
- 6. Efficient statements. Using only the logical operands \wedge and \vee , write a statement φ which is true if and only if at least two of $\{P_1, \ldots, P_8\}$ are true. Your sentence should use each P_j at most 3 times. For example,

$$[P_1 \wedge (P_2 \vee \ldots \vee P_8)] \vee [P_2 \wedge (P_3 \vee \ldots \vee P_8)] \vee \ldots \vee [P_7 \wedge P_8]$$

is logically equivalent to the desired sentence φ , but it is not efficient enough since P_8 is used a total of 7 times.