Directions: You may work to solve these problems in groups, but all written work must be your own. Unless the problem indicates otherwise, all problems require some justification; a correct answer without supporting reasoning is not sufficient. Submissions must be stapled. See "Guidelines and advice" on the course webpage for more information.

1. Proof critiques. Give a critique of each claimed proof below. A proof critique addresses the following questions: (1) Is the proof correct? (2) If correct, can the proof be improved in some way? (3) If incorrect, what is/are the error(s)? Can they be fixed, and if so, how?
(a) Theorem 1. If x and y are real numbers, then $\frac{x+y}{2} \geq \sqrt{x y}$.

Proof:

$$
\begin{aligned}
\frac{x+y}{2} & \geq \sqrt{x y} \\
x+y & \geq 2 \sqrt{x y} \\
(x+y)^{2} & \geq 4 x y \\
x^{2}+2 x y+y^{2} & \geq 4 x y \\
x^{2}-2 x y+y^{2} & \geq 0 \\
(x-y)^{2} \geq 0 &
\end{aligned}
$$

(b) Theorem 2. All real numbers are equal.

Proof: Let x and y be real numbers. Observe that

$$
x^{2}-y^{2}=(x-y)(x+y)=x(x+y)-y(x+y) .
$$

After rearranging terms, this becomes $x^{2}-x(x+y)=y^{2}-y(x+y)$. Adding $\frac{(x+y)^{2}}{4}$ to both sides gives $x^{2}-x(x+y)+\frac{(x+y)^{2}}{4}=y^{2}-y(x+y)+\frac{(x+y)^{2}}{4}$. Factoring both sides, we see that $\left(x-\frac{x+y}{2}\right)^{2}=\left(y-\frac{x+y}{2}\right)^{2}$ and taking the square root gives $x-\frac{x+y}{2}=y-\frac{x+y}{2}$. Adding $\frac{x+y}{2}$ to both sides gives $x=y$. Since x and y were arbitrarily chosen real numbers, it follows that all real numbers are equal.
(c) Theorem 3. If $n \in \mathbb{Z}$, then $n^{2}=3 k$ or $n^{2}=3 k+1$ for some $k \in \mathbb{Z}$.

Proof: Suppose that $n \in \mathbb{Z}$. By the division algorithm, it follows that $n=3 q+r$ for some integers q and r with $0 \leq r<3$. Since r is an integer and $0 \leq r<3$, it follows that $r \in\{0,1,2\}$. We consider three cases, depending on the value of r.

Case 1: If $r=0$, then $n^{2}=(3 q+0)^{2}=9 q^{2}=3\left(3 q^{2}\right)$, and so $n^{2}=3 k$ when we set k equal to the integer $3 q^{2}$.

Case 2: If $r=1$, then $n^{2}=(3 q+1)^{2}=9 q^{2}+6 q+1=3\left(3 q^{2}+2 q\right)+1$, and so $n^{2}=3 k+1$ when we set k equal to the integer $3 q^{2}+2 q$.

Case 3: If $r=2$, then $n^{2}=(3 q+2)^{2}=9 q^{2}+12 q+4=3\left(3 q^{2}+4 q+1\right)+1$, and so $n^{2}=3 k+1$ when we set k equal to the integer $3 q^{2}+4 q+1$.
In all cases, we have that $n^{2}=3 k$ or $n^{2}=3 k+1$ for some integer k.
(d) Theorem 4. Let $a, b, c \in \mathbb{Z}$. If $a \mid b$ and $b \mid c$, then $a \mid c$.

Proof: Since $a \mid b$, we have that $b=k a$ for some integer k. Similarly, since $b \mid c$, it follows that $c=k b$ for some integer k. Therefore $c=k b=k(k a)=k^{2} a$. Since k^{2} is an integer, it follows that $a \mid c$.
2. Prove that if x is an odd integer, then x^{3} is odd.
3. Prove that if x and y are integers and x is even, then $x y$ is even.
4. Prove that if $n \in \mathbb{Z}$, then $5 n^{2}+3 n+7$ is odd. Hint: try cases.
5. An integer p is prime if $p \geq 2$ and the only positive divisors of p are 1 and p. Prove that if n is a positive integer, $n \geq 2$, and n is not prime, then $2^{n}-1$ is not prime.
6. Efficient statements. Using only the logical operands \wedge and \vee, write a statement φ which is true if and only if at least two of $\left\{P_{1}, \ldots, P_{8}\right\}$ are true. Your sentence should use each P_{j} at most 3 times. For example,

$$
\left[P_{1} \wedge\left(P_{2} \vee \ldots \vee P_{8}\right)\right] \vee\left[P_{2} \wedge\left(P_{3} \vee \ldots \vee P_{8}\right)\right] \vee \ldots \vee\left[P_{7} \wedge P_{8}\right]
$$

is logically equivalent to the desired sentence φ, but it is not efficient enough since P_{8} is used a total of 7 times.

