Directions: You may work to solve these problems in groups, but all written work must be your own. Unless the problem indicates otherwise, all problems require some justification; a correct answer without supporting reasoning is not sufficient. Submissions must be stapled. See "Guidelines and advice" on the course webpage for more information.

- 1. Exercises from 11.0. In the following, let $A = \{1, 2, 3, 4, 5, 6\}$.
 - (a) Write out the relation R that expresses | (divides) on A. Then illustrate it with a diagram.
 - (b) How many different relations are there on A?
 - (c) Let $R = (\mathbb{R} \times \mathbb{R}) \{(x, x) \colon x \in \mathbb{R}\}$. What familiar relation on \mathbb{R} is this?
- 2. Exercises from 11.1.
 - (a) Let $A = \{a, b, c\}$ and let $R = \{(a, b), (a, c), (c, c), (b, b), (c, b), (b, c)\}$. Is the relation R reflexive? Symmetric? Transitive? If a property does not hold, then explain why.
 - (b) Define a relation R on \mathbb{Z} so that x R y if |x y| < 1. Is R reflexive? Symmetric? Transitive? If a property does not hold, then explain why. What familiar relation is this?
 - (c) Prove that the relation | (divides) on \mathbb{Z} is reflexive and transitive.
 - (d) Give an example of a relation on \mathbb{Z} that is reflexive and symmetric, but not transitive.
- 3. Critique the following argument.

Theorem 1. Let R be a relation on A. If R is symmetric and transitive, then R is reflexive.

Proof: We give a direct proof. Suppose that R is symmetric and transitive. We show that R is reflexive. Let $a \in A$ and let b be any other element in A such that $a \ R \ b$. Since R is symmetric, also $b \ R \ a$. Since $a \ R \ b$ and $b \ R \ a$, it follows by the transitivity of R that $a \ R \ a$. Since $a \ R \ a$ for each $a \in A$, it follows that R is reflexive.

- 4. Exercises from 11.2.
 - (a) Define a relation R on \mathbb{Z} so that $a \ R \ b$ if and only if $4 \mid x + 3y$. Prove that R is an equivalence relation. Describe its equivalence classes.
 - (b) Suppose that R and S are equivalence relations on A. Prove that $R \cap S$ is also an equivalence relation on A.
- 5. Exercises from 12.2.
 - (a) Let $D = \mathbb{R} \{1\}$. Prove that the function $f: D \to D$ defined by $f(x) = \left(\frac{x+1}{x-1}\right)^3$ is bijective.
 - (b) Consider the function θ : $\{0,1\} \times \mathbb{N} \to \mathbb{Z}$ defined as $\theta(a,b) = (-1)^a b$. Is θ injective? Is it surjective? Bijective? Explain.
 - (c) Consider the function $\theta: \mathcal{P}(\mathbb{Z}) \to \mathcal{P}(\mathbb{Z})$ defined as $\theta(X) = \overline{X}$. Is θ injective? Surjective? Bijective? Explain.
- 6. [Extra Credit] Read section 12.3 and solve the following problem. Suppose that there are five distinguished points inside a unit square. Prove that two of the distinguished points are at distance at most $\frac{\sqrt{2}}{2}$ from each other.