Directions: You may work to solve these problems in groups, but all written work must be your own. Unless the problem indicates otherwise, all problems require some justification; a correct answer without supporting reasoning is not sufficient. Submissions must be stapled. See "Guidelines and advice" on the course webpage for more information.

- 1. Use induction to prove the following.
 - (a) For each $n \in \mathbb{N}$, we have $\sum_{i=1}^{n} (8i-5) = 4n^2 n$.
 - (b) For each non-negative integer n, we have $9 \mid 4^{3n} + 8$.
 - (c) If $n \in \mathbb{N}$, then $2^n + 3^n \leq 5^n$.
 - (d) If $n \in \mathbb{N}$, then $(\sum_{k=1}^{n} k)^2 = \sum_{j=1}^{n} j^3$.
 - (e) If $n \in \mathbb{N}$, then $\sum_{k=1}^{n} k \binom{n}{k} = n2^{n-1}$. (Hint: you may need one to use one of our identities involving binomial coefficients.)
- 2. Using any method, prove the following.
 - (a) If x_1, \ldots, x_n are non-negative real numbers, then

$$(1+x_1)(1+x_2)\cdots(1+x_n) \ge 1+x_1+x_2+\cdots+x_n.$$

- (b) If $n \in \mathbb{Z}$, then gcd(3n+5, 5n+8) = 1.
- (c) If n is a non-negative integer, then $(1 + \sqrt{2})^n + (1 \sqrt{2})^n$ is an even integer.
- 3. Recall the Fibonacci numbers, defined by $F_1 = 1$, $F_2 = 1$, and $F_k = F_{k-1} + F_{k-2}$ for $k \ge 2$. Prove that each integer *n* can be represented as the sum of Fibonacci numbers, no two of which are consecutive. (For example, $2 = F_3$, $10 = F_6 + F_3 = 8 + 2$, and $20 = F_7 + F_5 + F_3 = 13 + 5 + 2$. However, even though $20 = F_7 + F_5 + F_2 + F_1$, this is not a desired representation for 20 since it uses the consecutive Fibonacci numbers F_1 and F_2 .)