Directions: Solve 5 of the following 6 problems. See the course syllabus and the Homework Webpage on the course website for general directions and guidelines.

1. Hales-Jewett extension. Let $\tau \in\left([t] \cup\left\{\star_{1}, \ldots, \star_{m}\right\}\right)^{n}$, where each \star_{j} appears in at least one coordinate of τ. For $x \in[t]^{m}$, let $\tau(x) \in[t]^{n}$ be the vector obtained from τ by replacing each occurrence of \star_{j} in τ with x_{j}. For example, with $\tau=2 \star_{2} 5 \star_{1} 82 \star_{2} 3$, we have $\tau(4,1)=21548213$. The combinatorial m-space rooted at τ is $\left\{\tau(x): x \in[t]^{m}\right\}$. Let $\mathrm{HJ}_{m}(r, t)$ be the minimum n such that every r-coloring of $[t]^{n}$ contains a monochromatic combinatorial m-space. Prove that $\operatorname{HJ}_{m}(r, t) \leq m\left[\operatorname{HJ}\left(r, t^{m}\right)\right]$.
2. Nearly spanning cycles. Show that there exists a constant c such that for all positive α and ε with $\alpha>\varepsilon$, there exists n_{0} such that the following holds for $n \geq n_{0}$. Every ε-regular pair with disjoint vertex sets X and Y of size n with density α has a cycle through all but at most $c \cdot \frac{\varepsilon}{\alpha-\varepsilon} n$ vertices.
3. Sharpness example for Corrádi-Hajnal. Prove that for every positive ε, there is an infinite family of graphs G such that $\delta(G) \geq\left(\frac{2}{3}-\varepsilon\right)|V(G)|$ but every subgraph of G with a triangle tiling has at most $(1-6 \varepsilon)|V(G)|$ vertices.
4. Tiling threshold for P_{3}. Determine the least α such that if G is an n-vertex graph such that 3 divides n and $\delta(G) \geq \alpha n$, then G has a P_{3}-tiling. (Note: this requires a proof that $\delta(G) \geq \alpha n$ implies that G has a P_{3}-tiling, and also a construction of a sequence of graphs G_{1}, G_{2}, \ldots such that G_{k} is a $3 k$-vertex graph and $\delta(G) \geq(\alpha-o(1)) 3 k$ but still G has no P_{3}-tiling.)
5. Nearly spanning tiling threshold for P_{3}.
(a) Prove that for each $\varepsilon>0$, there exists n_{0} such that if G is an n-vertex graph with $n \geq n_{0}$ and $\delta(G) \geq \frac{1}{3} n$, then G has a P_{3}-tiling subgraph with at least $(1-\varepsilon) n$ vertices.
(b) Give a family of examples that shows that the constant $1 / 3$ in part (b) is sharp.
6. An n-vertex graph with density ρ is (δ, γ)-uniform if $d(X, Y) \leq(1+\delta) \rho|X||Y|$ when X and Y are disjoint vertex sets, each of size at least γn.
Let r be an integer, and let ρ and δ be positive real numbers such that $r \geq 3$ and $\delta<\frac{1}{r-2}$. Show that there exists $\gamma>0$ and n_{0} such that if G is an n-vertex m-edge (δ, γ)-uniform graph with $n \geq n_{0}$ and $m \geq \rho \frac{n^{2}}{2}$, then $K_{r} \subseteq G$. (Hint 1: first try the case $r=3$. Hint 2: let $\varepsilon=\varepsilon(r, \rho, \delta)$, and let $\alpha=\frac{1}{2 r} \varepsilon^{r}$. With α chosen this way, obtain an α-regular partition and clean G with respect to a density threshold of 2ε. Then apply the embedding lemma with target graph K_{r}.)
Comment: Turán's theorem states that a graph with density more than $1-\frac{1}{r-1}$ contains a copy of K_{r}. In this exercise, we show that very small densities force a copy of K_{r} provided that the edges of G are distributed uniformly.
