Directions: Solve 5 of the following 6 problems. See the course syllabus and the Homework Webpage on the course website for general directions and guidelines.

- 1. Hales-Jewett extension. Let $\tau \in ([t] \cup \{\star_1, \ldots, \star_m\})^n$, where each \star_j appears in at least one coordinate of τ . For $x \in [t]^m$, let $\tau(x) \in [t]^n$ be the vector obtained from τ by replacing each occurrence of \star_j in τ with x_j . For example, with $\tau = 2\star_25\star_182\star_23$, we have $\tau(4, 1) = 21548213$. The combinatorial m-space rooted at τ is $\{\tau(x) \colon x \in [t]^m\}$. Let $\mathrm{HJ}_m(r,t)$ be the minimum n such that every r-coloring of $[t]^n$ contains a monochromatic combinatorial m-space. Prove that $\mathrm{HJ}_m(r,t) \leq m[\mathrm{HJ}(r,t^m)]$.
- 2. Nearly spanning cycles. Show that there exists a constant c such that for all positive α and ε with $\alpha > \varepsilon$, there exists n_0 such that the following holds for $n \ge n_0$. Every ε -regular pair with disjoint vertex sets X and Y of size n with density α has a cycle through all but at most $c \cdot \frac{\varepsilon}{\alpha \varepsilon} n$ vertices.
- 3. Sharpness example for Corrádi-Hajnal. Prove that for every positive ε , there is an infinite family of graphs G such that $\delta(G) \ge (\frac{2}{3} \varepsilon)|V(G)|$ but every subgraph of G with a triangle tiling has at most $(1 6\varepsilon)|V(G)|$ vertices.
- 4. Tiling threshold for P_3 . Determine the least α such that if G is an n-vertex graph such that 3 divides n and $\delta(G) \geq \alpha n$, then G has a P_3 -tiling. (Note: this requires a proof that $\delta(G) \geq \alpha n$ implies that G has a P_3 -tiling, and also a construction of a sequence of graphs G_1, G_2, \ldots such that G_k is a 3k-vertex graph and $\delta(G) \geq (\alpha o(1))3k$ but still G has no P_3 -tiling.)
- 5. Nearly spanning tiling threshold for P_3 .
 - (a) Prove that for each $\varepsilon > 0$, there exists n_0 such that if G is an n-vertex graph with $n \ge n_0$ and $\delta(G) \ge \frac{1}{3}n$, then G has a P_3 -tiling subgraph with at least $(1 - \varepsilon)n$ vertices.
 - (b) Give a family of examples that shows that the constant 1/3 in part (b) is sharp.
- 6. An *n*-vertex graph with density ρ is (δ, γ) -uniform if $d(X, Y) \leq (1 + \delta)\rho|X||Y|$ when X and Y are disjoint vertex sets, each of size at least γn .

Let r be an integer, and let ρ and δ be positive real numbers such that $r \geq 3$ and $\delta < \frac{1}{r-2}$. Show that there exists $\gamma > 0$ and n_0 such that if G is an n-vertex m-edge (δ, γ) -uniform graph with $n \geq n_0$ and $m \geq \rho \frac{n^2}{2}$, then $K_r \subseteq G$. (Hint 1: first try the case r = 3. Hint 2: let $\varepsilon = \varepsilon(r, \rho, \delta)$, and let $\alpha = \frac{1}{2r}\varepsilon^r$. With α chosen this way, obtain an α -regular partition and clean G with respect to a density threshold of 2ε . Then apply the embedding lemma with target graph K_r .)

Comment: Turán's theorem states that a graph with density more than $1 - \frac{1}{r-1}$ contains a copy of K_r . In this exercise, we show that very small densities force a copy of K_r provided that the edges of G are distributed uniformly.