Directions: Solve 5 of the following 6 problems. See the course syllabus and the Homework Webpage on the course website for general directions and guidelines.

1. Let G be a t-vertex m-edge graph with $m \geq 2$. Show that $\operatorname{ex}(n, G) \geq c n^{2-\frac{t-2}{m-1}}$. Compare this lower bound in the case that $G=C_{2 k}$ with the Bondy-Simonovits theorem.
2. Turán number of C_{6}.
(a) Prove that if G is an m-edge graph with no 6 -cycle, then G has a subgraph with at least $m / 4$ edges and girth at least 8 .
(b) Use part (a) to show that $\mathrm{ex}\left(n, C_{6}\right) \leq c n^{4 / 3}$ for some constant c.
3. The diamond poset Turán problem.
(a) Let $\mathcal{F} \subseteq 2^{[n]}$ be nonempty. For each $A \in \mathcal{F}$, let I_{A} be the number of times that a random chain from A to $[n]$ meets \mathcal{F}. (Note that since $A \in \mathcal{F}$, always $I_{A} \geq 1$.) Show that there exists $A \in \mathcal{F}$ such that $\mathbb{E}\left(I_{A}\right) \geq \ell(\mathcal{F})$.
(b) Prove that if $\ell(\mathcal{F})>2.5$, then \mathcal{F} weakly contains the diamond poset $2{ }^{[2]}$. Conclude that $\mathrm{La}\left(n, 2^{[2]}\right) \leq 2.5\binom{n}{n / 2}$.
4. The t-dimensional hypercube, denoted Q_{t}, has vertex set $\{0,1\}^{t}$ with vertices adjacent if and only if they disagree in exactly one coordinate. Prove that there exists a constant c such that $R\left(Q_{t}, Q_{t}\right) \leq 2^{c t}$ for all t. (Hint: given a 2-edge-coloring of K_{n}, apply a modified the dependent random choice lemma to a monochromatic subgraph with density at least $1 / 2$.)
5. In a hypergraph, the degree of a set of vertices S, denoted $d(S)$, is the number of edges containing S. Let $n \geq 5$ and let G be an n-vertex 3 -uniform hypergraph such that $d(S)=$ $d\left(S^{\prime}\right)>0$ when $|S|=\left|S^{\prime}\right|=2$. Prove that $\chi(G)>2$.

6 . Let G be the 3 -uniform complete 3 -partite graph with t vertices in each part.
(a) Let H be an n-vertex 3 -uniform graph. For a set $S \subseteq V(H)$, let $d(S)$ be the number of edges in H that contain S. Prove that if $\sum_{S \in\binom{V(H)}{2}}\binom{d(S)}{t}>\operatorname{ex}\left(n, K_{t, t}\right)\binom{n}{t}$, then $G \subseteq H$.
(b) Prove that $\operatorname{ex}(n, G) \leq c_{t} n^{3-\frac{1}{t^{2}}}$ for some constant c_{t}.

