Directions: Solve 5 of the following 6 problems. See the course syllabus and the Homework Webpage on the course website for general directions and guidelines.

- 1. Let G be a t-vertex m-edge graph with $m \ge 2$. Show that $ex(n,G) \ge cn^{2-\frac{t-2}{m-1}}$. Compare this lower bound in the case that $G = C_{2k}$ with the Bondy–Simonovits theorem.
- 2. Turán number of C_6 .
 - (a) Prove that if G is an m-edge graph with no 6-cycle, then G has a subgraph with at least m/4 edges and girth at least 8.
 - (b) Use part (a) to show that $ex(n, C_6) \leq cn^{4/3}$ for some constant c.
- 3. The diamond poset Turán problem.
 - (a) Let $\mathcal{F} \subseteq 2^{[n]}$ be nonempty. For each $A \in \mathcal{F}$, let I_A be the number of times that a random chain from A to [n] meets \mathcal{F} . (Note that since $A \in \mathcal{F}$, always $I_A \ge 1$.) Show that there exists $A \in \mathcal{F}$ such that $\mathbb{E}(I_A) \ge \ell(\mathcal{F})$.
 - (b) Prove that if $\ell(\mathcal{F}) > 2.5$, then \mathcal{F} weakly contains the diamond poset $2^{[2]}$. Conclude that $\operatorname{La}(n, 2^{[2]}) \leq 2.5 \binom{n}{n/2}$.
- 4. The *t*-dimensional hypercube, denoted Q_t , has vertex set $\{0,1\}^t$ with vertices adjacent if and only if they disagree in exactly one coordinate. Prove that there exists a constant *c* such that $R(Q_t, Q_t) \leq 2^{ct}$ for all *t*. (Hint: given a 2-edge-coloring of K_n , apply a modified the dependent random choice lemma to a monochromatic subgraph with density at least 1/2.)
- 5. In a hypergraph, the *degree* of a set of vertices S, denoted d(S), is the number of edges containing S. Let $n \ge 5$ and let G be an n-vertex 3-uniform hypergraph such that d(S) = d(S') > 0 when |S| = |S'| = 2. Prove that $\chi(G) > 2$.
- 6. Let G be the 3-uniform complete 3-partite graph with t vertices in each part.
 - (a) Let *H* be an *n*-vertex 3-uniform graph. For a set $S \subseteq V(H)$, let d(S) be the number of edges in *H* that contain *S*. Prove that if $\sum_{S \in \binom{V(H)}{t}} \binom{d(S)}{t} > \exp(n, K_{t,t}) \binom{n}{t}$, then $G \subseteq H$.
 - (b) Prove that $ex(n, G) \le c_t n^{3-\frac{1}{t^2}}$ for some constant c_t .