Directions: Solve 4 of the first 5 problems, plus problem number 6 . See the course syllabus and the Homework Webpage on the course website for general directions and guidelines.

1. For an integer m and a graph G, we use $m G$ to denote the disjoint union of m copies of G. Prove that $R\left(m K_{2}, m K_{2}\right)=3 m-1$.
2. Let S be a set of $R^{(3)}(m, m)$ points in the plane with no three on a line. Prove that S contains m points that form a convex m-gon. (Hint: assign to each triple $\{p, q, r\} \in\binom{S}{3}$ one of two colors that encodes appropriate information about their arrangement in the plane.)
3. Given graphs G_{1} and G_{2}, the induced Ramsey number, denoted $R^{\star}\left(G_{1}, G_{2}\right)$, is the minimum number of vertices in a host graph H such that every red/blue edge-coloring of H contains an induced copy of G_{1} that is all red or an induced copy of G_{2} that is all blue.
(a) Determine $R^{\star}\left(P_{3}, P_{3}\right)$, where P_{3} denotes the path on 3 vertices.
(b) Prove that if G is an n-vertex graph with m edges, then $R^{\star}\left(P_{3}, G\right) \leq n+m$.

Comment: it is not obvious that $R^{\star}\left(G_{1}, G_{2}\right)$ exists, since the requirement that our target graphs G_{1} and G_{2} be induced prevents using a large complete graph for H. The induced Ramsey theorem was discovered in the 1970's independently by several groups.
4. Use Behrend's construction to show that for some constant c and all sufficiently large n, there exists a subgraph G of $K_{n, n}$ with at least $n^{2-\frac{c}{\sqrt{\ln n}}}$ edges that is the union of at most $2 n-1$ induced matchings. (Hint: first obtain a relatively large subset of $[n]^{2}$ with no three points of the form $(x, y),(x+d, y),(x, y+d)$ with $d \neq 0$.)
5. Turán Theorem stability for K_{4}-free graphs. Let G be an n-vertex K_{4}-free graph with m edges. For each edge $e \in E(G)$, let $f(e)$ be the number of vertices that complete a triangle with e. Let t be the number of triangles in G, and let k be the number of copies of K_{4}^{-}in G. (Here, K_{4}^{-}denotes the graph obtained from K_{4} by deleting an edge.)
(a) Prove that $3 t=\sum_{e \in E(G)} f(e)$ and $k=\sum_{e \in E(G)}\binom{f(e)}{2}$.
(b) Prove that $2 k \geq \frac{9 t^{2}}{m}-3 t$.
(c) Let B be the (X, Y)-bigraph where X is the set of triangles in G and $Y=|V(G)|$ with $T \in X$ and $y \in Y$ adjacent if and only if T and y together form a copy of K_{4}^{-}in G. Prove that there exists $T \in X$ such that T has at least $\frac{9 t}{m}-3$ neighbors.
(d) Prove that for every $\varepsilon>0$, there exists $\delta>0$ such that every n-vertex K_{4}-free graph with at least $\left(\frac{1}{3}-\delta\right) n^{2}$ edges can be made 3 -colorable by deleting at most εn vertices. (Hint: regularity is not needed. You may find our lower bound on t from HW1 useful.)
6. [Required problem] Prove that for each $\varepsilon>0$, there exists a constant C such that if G is an n-vertex triangle-free graph with $\delta(G) \geq\left(\frac{1}{3}+\varepsilon\right) n$, then $\chi(G) \leq C$. (Hint: choose an appropriate α in terms of ε and let $\left\{X_{1}, \ldots, X_{M}\right\}$ be an α-regular equipartition of $V(G)$. Show that for each vertex $v \in V(G)$, there is a part X_{i} such that v has more than $\frac{1}{2}\left|X_{i}\right|$ neighbors in X_{i}.)

