Directions: Solve 5 of the following 6 problems. See the course syllabus and the Homework Webpage on the course website for general directions and guidelines.

1. A chord of a cycle C is an edge $e \in E(G)-E(C)$ that has both endpoints on C.
(a) Show that if $\delta(G) \geq 3$, then G has a cycle with a chord.
(b) Prove that for $n \geq 4$, if G has at least $2 n-3$ edges, then G has a cycle with a chord.
2. Prove that an n-vertex graph with m edges has at least $\frac{m}{3 n}\left(4 m-n^{2}\right)$ triangles. (Hint: adapt a proof form class.)
3. Recall that a decomposition of a graph G is a list of subgraphs H_{1}, \ldots, H_{t} such that each edge in G appears in exactly one of $\left\{H_{1}, \ldots, H_{t}\right\}$; the size of the decomposition H_{1}, \ldots, H_{t} is t.
(a) Prove that each graph G has a matching of size at least $\delta(G) / 2$.
(b) Use part (a) to show that each n-vertex graph has a decomposition into triangles and edges of size at most $n^{2} / 4$. (Hint: first handle edges incident to a vertex u of minimum degree, and then apply induction to an appropriate subgraph of $G-u$.)
4. For a vertex v in an n-vertex graph G, let $f(v)=\alpha(G[N(v)])$; that is, $f(v)$ is the maximum size of an independent set in the neighbors of v. Prove that $\sum_{v \in V(G)} f(v) \leq\left\lfloor n^{2} / 2\right\rfloor$ and determine which graphs achieve equality.
5. Let G be an n-vertex graph and let S be the set of nonnegative vectors in \mathbb{R}^{n} that sum to 1 . Given an n-vertex graph G, define $f(x)=\sum_{u v \in E(G)} x_{u} x_{v}$, and let $M=\max _{x \in S} f(x)$.
(a) Prove that $M=\frac{1}{2}\left(1-\frac{1}{r}\right)$, where $r=\omega(G)$. (Recall that $\omega(G)$ is the maximum size of a clique in G.) (Hint: if $u v \notin E(G)$, then show that $f\left(x^{\prime}\right) \geq f(x)$ for some x^{\prime} with $x_{u} x_{v}=0$.)
(b) Show that $|E(G)| \leq \frac{n^{2}}{2}\left(1-\frac{1}{r}\right)$.

Comment: it is also possible to derive the structure of extremal examples from this proof with some additional work. Start by showing that M is attained by an $x \in S$ with all positive coordinates if and only if G is a complete r-partite graph.
6. Let G be a connected graph such that $d(u)+d(v) \geq k$ whenever $u v \notin E(G)$. Prove that G is Hamiltonian or has a copy of P_{k+1}.

