Directions: Solve the following problems. See the course syllabus and the Homework Webpage on the course website for general directions and guidelines.

- 1. [8.1] Let p be a prime and let $d = \gcd(m, p-1)$. Prove that $N(x^m = a) = \sum_{\{\chi: \chi^d = \varepsilon\}} \chi(a)$.
- 2. [8.{3,4,6}] Let χ be a nontrivial character of F_p and let ρ be the character of order 2.
 - (a) Show that $\sum_t \chi(1-t^2) = J(\chi,\rho)$. (Hint: evaluate $J(\chi,\rho)$ using the relation $N(x^2 = a) = 1 + \rho(a)$.)
 - (b) Let $k \in F_p^{\star}$. Show that $\sum_t \chi(t(k-t)) = \chi(k^2/2^2)J(\chi,\rho)$. (Hint: multiply the identity in part (a) by $\chi(k^2/2^2)$ and use a change of variable.)
 - (c) Show that $J(\chi, \chi) = \chi(2)^{-2} J(\chi, \rho)$. (Hint: Apply (b) with k = 1.)
- 3. [8.7] Suppose that $p \equiv 1 \pmod{4}$ and that χ is a character of order 4, and let $\rho = \chi^2$. Prove that $J(\chi, \chi) = \chi(-1)J(\chi, \rho)$.
- 4. [8.{12,13}] Uniqueness of representations.
 - (a) Suppose that $p \equiv 1 \pmod{4}$, so that $p = a^2 + b^2$ for some $a, b \in \mathbb{Z}$. Prove that if we require a and b to be positive, with a odd and b even, then a and b are uniquely determined. (Hint: argue that a + bi is prime in the unique factorization domain $\mathbb{Z}[i]$.)
 - (b) Suppose that $p \equiv 1 \pmod{3}$, so that $4p = A^2 + 27B^2$ for some $A, B \in \mathbb{Z}$. Prove that if we require that $A \equiv 1 \pmod{3}$, then A is uniquely determined. (Hint: show that if $\alpha \in \mathbb{Z}[\omega]$ and $|\alpha|^2 = p$, then α is prime in the unique factorization domain $\mathbb{Z}[\omega]$.)
- 5. [8.14] Suppose that $p \equiv 1 \pmod{n}$ and that χ is a character of order n. Show that $g(\chi)^n \in \mathbb{Z}[\eta]$ where $\eta = e^{2\pi i/n}$.
- 6. [8.19] Find a formula for the number of solutions to $x_1^2 + \cdots + x_r^2 = 0$ in F_p . Hint: first show that the number of solutions is given by $p^{r-1} + J_0(\rho, \ldots, \rho)$, where ρ is the Legendre symbol (i.e. character of order 2) and there are r arguments to J_0 . Then use Proposition 8.5.1 and Theorem 3.)
- 7. $[9.\{12,13,14\}]$ Let $\omega = e^{2\pi i/3}$, $\lambda = 1 \omega$, and $D = \mathbb{Z}[\omega]$.
 - (a) Show that $\omega\lambda$ has order 8 in D/5D and that $\omega^2\lambda$ has order 24. [Hint: first show that $(\omega\lambda)^2$ has order 4.]
 - (b) Show that π is a cube in D/5D if and only if π is congruent modulo 5 to an element in $\{1, 2, 3, 4, 1 + 2\omega, 2 + 4\omega, 3 + \omega, 4 + 3\omega\}$.
 - (c) For which primes $\pi \in D$ is $x^3 \equiv 5 \pmod{\pi}$ solvable?
- 8. [9.15] Suppose that $p \equiv 1 \pmod{3}$ and that $p = \pi \overline{\pi}$, where π is a primary prime in D. Let a be an integer. Show that $x^3 \equiv a \pmod{p}$ has an integer solution x if and only if $\chi_{\pi}(a) = 1$. (Hint: first argue that π and $\overline{\pi}$ are relatively prime. Be careful to obtain an integer solution $x \in \mathbb{Z}$, and not just a solution $x \in D$; it may help to recall that $\{0, 1, \ldots, p-1\}$ is a complete set of representatives for $D/\pi D$.)