Directions: Solve the following problems. See the course syllabus and the Homework Webpage on the course website for general directions and guidelines.

1. [8.1] Let p be a prime and let $d=\operatorname{gcd}(m, p-1)$. Prove that $N\left(x^{m}=a\right)=\sum_{\left\{\chi: \chi^{d}=\varepsilon\right\}} \chi(a)$.
2. $[8 .\{3,4,6\}]$ Let χ be a nontrivial character of F_{p} and let ρ be the character of order 2 .
(a) Show that $\sum_{t} \chi\left(1-t^{2}\right)=J(\chi, \rho)$. (Hint: evaluate $J(\chi, \rho)$ using the relation $N\left(x^{2}=\right.$ $a)=1+\rho(a)$.)
(b) Let $k \in F_{p}^{\star}$. Show that $\sum_{t} \chi(t(k-t))=\chi\left(k^{2} / 2^{2}\right) J(\chi, \rho)$. (Hint: multiply the identity in part (a) by $\chi\left(k^{2} / 2^{2}\right)$ and use a change of variable.)
(c) Show that $J(\chi, \chi)=\chi(2)^{-2} J(\chi, \rho)$. (Hint: Apply (b) with $k=1$.)
3. [8.7] Suppose that $p \equiv 1(\bmod 4)$ and that χ is a character of order 4 , and let $\rho=\chi^{2}$. Prove that $J(\chi, \chi)=\chi(-1) J(\chi, \rho)$.
4. [8. $\{12,13\}]$ Uniqueness of representations.
(a) Suppose that $p \equiv 1(\bmod 4)$, so that $p=a^{2}+b^{2}$ for some $a, b \in \mathbb{Z}$. Prove that if we require a and b to be positive, with a odd and b even, then a and b are uniquely determined. (Hint: argue that $a+b i$ is prime in the unique factorization domain $\mathbb{Z}[i]$.)
(b) Suppose that $p \equiv 1(\bmod 3)$, so that $4 p=A^{2}+27 B^{2}$ for some $A, B \in \mathbb{Z}$. Prove that if we require that $A \equiv 1(\bmod 3)$, then A is uniquely determined. (Hint: show that if $\alpha \in \mathbb{Z}[\omega]$ and $|\alpha|^{2}=p$, then α is prime in the unique factorization domain $\mathbb{Z}[\omega]$.)
5. [8.14] Suppose that $p \equiv 1(\bmod n)$ and that χ is a character of order n. Show that $g(\chi)^{n} \in$ $\mathbb{Z}[\eta]$ where $\eta=e^{2 \pi i / n}$.
6. [8.19] Find a formula for the number of solutions to $x_{1}^{2}+\cdots+x_{r}^{2}=0$ in F_{p}. Hint: first show that the number of solutions is given by $p^{r-1}+J_{0}(\rho, \ldots, \rho)$, where ρ is the Legendre symbol (i.e. character of order 2) and there are r arguments to J_{0}. Then use Proposition 8.5.1 and Theorem 3.)
7. $[9 .\{12,13,14\}]$ Let $\omega=e^{2 \pi i / 3}, \lambda=1-\omega$, and $D=\mathbb{Z}[\omega]$.
(a) Show that $\omega \lambda$ has order 8 in $D / 5 D$ and that $\omega^{2} \lambda$ has order 24 . [Hint: first show that $(\omega \lambda)^{2}$ has order 4.]
(b) Show that π is a cube in $D / 5 D$ if and only if π is congruent modulo 5 to an element in $\{1,2,3,4,1+2 \omega, 2+4 \omega, 3+\omega, 4+3 \omega\}$.
(c) For which primes $\pi \in D$ is $x^{3} \equiv 5(\bmod \pi)$ solvable?
8. [9.15] Suppose that $p \equiv 1(\bmod 3)$ and that $p=\pi \bar{\pi}$, where π is a primary prime in D. Let a be an integer. Show that $x^{3} \equiv a(\bmod p)$ has an integer solution x if and only if $\chi_{\pi}(a)=1$. (Hint: first argue that π and $\bar{\pi}$ are relatively prime. Be careful to obtain an integer solution $x \in \mathbb{Z}$, and not just a solution $x \in D$; it may help to recall that $\{0,1, \ldots, p-1\}$ is a complete set of representatives for $D / \pi D$.)
