Directions: Solve the following problems. See the course syllabus and the Homework Webpage on the course website for general directions and guidelines.

- 1. [6.15] Show that $\left|\sum_{a=m}^{n} \left(\frac{a}{p}\right)\right| < \sqrt{p}(1+\ln p)$. [Hint: use the relation $\left(\frac{a}{p}\right)g = g_a$ and sum. The inequalities $\sin x \geq \frac{2}{\pi}x$ for any acute angle x and $H_n \leq 1 + \ln n$, where $H_n = 1 + 1/2 + 1/3 + \cdots + 1/n$, will be useful.]
- 2. [7.1] Use the method of Möbius inversion to show that a finite subgroup of the multiplicative group of a field is cyclic.
- 3. [7.16] Calculate the monic irreducibles of degree 4 in $\mathbb{Z}/2\mathbb{Z}$.
- 4. Let K and F be finite fields with [K : F] = n. Prove that if γ is a generator of K^* , then γ has degree n over F.
- 5. Let K be an extension of $\mathbb{Z}/3\mathbb{Z}$ of degree 12, and let a_n be the number of elements $\alpha \in K^*$ such that α has degree n over $\mathbb{Z}/3\mathbb{Z}$. Determine the sequence $(a_1, a_2, \ldots, a_{12})$ explicitly. Of the elements having degree 12, how many are generators?
- 6. $[7.\{3,4,5\}]$ Let F be a field with q elements and suppose that $q \equiv 1 \pmod{n}$.
 - (a) Show that for $\alpha \in F^*$, the equation $x^n = \alpha$ has either no solutions or n solutions.
 - (b) Show that the set of $\alpha \in F^*$ such that $x^n = \alpha$ is solvable is a subgroup with (q-1)/n elements.
 - (c) Let K be a field containing F such that [K : F] = n. For all $\alpha \in F^*$, show that the equation $x^n = \alpha$ has n solutions in K. Hint: show that $n(q-1) \mid q^n 1$ and use the fact that $\alpha^{q-1} = 1$.
- 7. $[7.\{8,6,7\}]$ Squares in fields.
 - (a) In a field with 2^n elements, what is the subgroup of squares?
 - (b) Let $K \supset F$ be finite fields with [K : F] = 3. Show that if $\alpha \in F$ is not a square in F, then it is also not a square in K.
 - (c) Generalize part (b) by showing that if α is not a square in F, then it is not a square in each extension of odd degree and it is a square in each extension of even degree.
- 8. [7.{12,15}] Extensions and linear factors.
 - (a) Use Proposition 7.2.1 to show that given a field k and a polynomial $f(x) \in k[x]$ there is a field $K \supset k$ such that [K:k] is finite and f(x) factors into monic polynomials of degree 1 in K[x].
 - (b) Suppose that gcd(q, n) = 1 for integers q and n and let F be a field with q elements. Show that if K is an extension in which $x^n - 1$ factors into monic polynomials of degree 1, then $x^n - 1$ has distinct roots in K. [Hint: formal differentiation. Make sure you use that gcd(q, n) = 1 since it is not true otherwise.]
 - (c) Let f be the smallest degree of an extension K of F such that $x^n 1$ splits into linear factors in K. Show that f is the order of q modulo n (i.e. f is the smallest positive integer t such that $q^t \equiv 1 \pmod{n}$). [Hint: to show that $q^f \equiv 1 \pmod{n}$, argue that the roots of $x^n 1$ form a subgroup of K^* and apply Lagrange's theorem. To show

that f is the smallest such integer, let t be an integer satisfying $q^t \equiv 1 \pmod{n}$ and set $K' = \{\alpha \in K : \alpha^{q^t} = \alpha\}$. Argue that K' is a subfield of K of degree at most t and still $x^n - 1$ splits into linear factors in K'.]