Directions: Solve the following problems. See the course syllabus and the Homework Webpage on the course website for general directions and guidelines.

1. [6.15] Show that $\left|\sum_{a=m}^{n}\left(\frac{a}{p}\right)\right|<\sqrt{p}(1+\ln p)$. [Hint: use the relation $\left(\frac{a}{p}\right) g=g_{a}$ and sum. The inequalities $\sin x \geq \frac{2}{\pi} x$ for any acute angle x and $H_{n} \leq 1+\ln n$, where $H_{n}=$ $1+1 / 2+1 / 3+\cdots+1 / n$, will be useful.]
2. [7.1] Use the method of Möbius inversion to show that a finite subgroup of the multiplicative group of a field is cyclic.
3. [7.16] Calculate the monic irreducibles of degree 4 in $\mathbb{Z} / 2 \mathbb{Z}$.
4. Let K and F be finite fields with $[K: F]=n$. Prove that if γ is a generator of K^{*}, then γ has degree n over F.
5. Let K be an extension of $\mathbb{Z} / 3 \mathbb{Z}$ of degree 12 , and let a_{n} be the number of elements $\alpha \in K^{*}$ such that α has degree n over $\mathbb{Z} / 3 \mathbb{Z}$. Determine the sequence ($a_{1}, a_{2}, \ldots, a_{12}$) explicitly. Of the elements having degree 12 , how many are generators?
6. $[7 .\{3,4,5\}]$ Let F be a field with q elements and suppose that $q \equiv 1(\bmod n)$.
(a) Show that for $\alpha \in F^{*}$, the equation $x^{n}=\alpha$ has either no solutions or n solutions.
(b) Show that the set of $\alpha \in F^{*}$ such that $x^{n}=\alpha$ is solvable is a subgroup with $(q-1) / n$ elements.
(c) Let K be a field containing F such that $[K: F]=n$. For all $\alpha \in F^{*}$, show that the equation $x^{n}=\alpha$ has n solutions in K. Hint: show that $n(q-1) \mid q^{n}-1$ and use the fact that $\alpha^{q-1}=1$.
7. $[7 .\{8,6,7\}]$ Squares in fields.
(a) In a field with 2^{n} elements, what is the subgroup of squares?
(b) Let $K \supset F$ be finite fields with $[K: F]=3$. Show that if $\alpha \in F$ is not a square in F, then it is also not a square in K.
(c) Generalize part (b) by showing that if α is not a square in F, then it is not a square in each extension of odd degree and it is a square in each extension of even degree.
8. [7. $\{12,15\}]$ Extensions and linear factors.
(a) Use Proposition 7.2 .1 to show that given a field k and a polynomial $f(x) \in k[x]$ there is a field $K \supset k$ such that $[K: k]$ is finite and $f(x)$ factors into monic polynomials of degree 1 in $K[x]$.
(b) Suppose that $\operatorname{gcd}(q, n)=1$ for integers q and n and let F be a field with q elements. Show that if K is an extension in which $x^{n}-1$ factors into monic polynomials of degree 1 , then $x^{n}-1$ has distinct roots in K. [Hint: formal differentiation. Make sure you use that $\operatorname{gcd}(q, n)=1$ since it is not true otherwise.]
(c) Let f be the smallest degree of an extension K of F such that $x^{n}-1$ splits into linear factors in K. Show that f is the order of q modulo n (i.e. f is the smallest positive integer t such that $\left.q^{t} \equiv 1(\bmod n)\right)$. [Hint: to show that $q^{f} \equiv 1(\bmod n)$, argue that the roots of $x^{n}-1$ form a subgroup of K^{*} and apply Lagrange's theorem. To show
that f is the smallest such integer, let t be an integer satisfying $q^{t} \equiv 1(\bmod n)$ and set $K^{\prime}=\left\{\alpha \in K: \alpha^{q^{t}}=\alpha\right\}$. Argue that K^{\prime} is a subfield of K of degree at most t and still $x^{n}-1$ splits into linear factors in K^{\prime}.]
