Directions: Solve the following problems. See the course syllabus and the Homework Webpage on the course website for general directions and guidelines.

- 1. [IR 5.{26,27,28}] Let p be a prime such that $p \equiv 1 \pmod{4}$. An integer c is called a biquadratic residue modulo p if $p \nmid c$ and $x^4 \equiv c \pmod{p}$ has a solution. Since $p \equiv 1 \pmod{4}$, from an exercise on HW3, we know that $p = a^2 + b^2$ for some integers a and bwith $1 \leq a, b < \sqrt{p}$. By symmetry, we may assume that a is odd and b is even.
 - (a) Prove that $\left(\frac{a}{p}\right) = 1$ and $\left(\frac{a+b}{p}\right) = (-1)^{((a+b)^2-1)/8}$. [Hint: since a and a+b are odd, the Jacobi symbols $\left(\frac{p}{a}\right)$ and $\left(\frac{p}{a+b}\right)$ are well defined.]
 - (b) Prove that $(a + b)^2 \equiv 2ab \pmod{p}$ and conclude that $(a + b)^{(p-1)/2} \equiv (2ab)^{(p-1)/4} \pmod{p}$.
 - (c) Let f be an integer such that $b \equiv af \pmod{p}$. Show that $f^2 \equiv -1 \pmod{p}$ and that $2^{(p-1)/4} \equiv f^{ab/2} \pmod{p}$.
 - (d) Show that c is a biquadratic residue modulo p if and only if $c^{(p-1)/4} \equiv 1 \pmod{p}$.
 - (e) Show that (for $p \equiv 1 \pmod{4}$), the integer 2 is a biquadratic residue modulo p if and only if $p = A^2 + 64B^2$ for some integers A and B.
- 2. [IR 6.1] Show that $\sqrt{2} + \sqrt{3}$ is an algebraic integer. [Hint: closure properties.]
- 3. [IR 6.2] Let α be an algebraic number. Show that there is an integer n such that $n\alpha$ is an algebraic integer.
- 4. [IR 6.{4,5,7}] Algebraic integers in $\mathbb{Q}[\sqrt{D}]$ for a square-free integer D.
 - (a) Gauss's Lemma. A polynomial f ∈ Z[x] is primitive if the greatest common divisor of its coefficients is 1. Prove that the product of primitive polynomials is again primitive. [Hint: let f₁ and f₂ be primitive polynomials in Z[x] and let p be a prime. Since f_i is primitive, there is a least integer r_i such that the coefficient of x^{r_i} in f_i is not divisible by p. Argue that the coefficient of x^{r₁+r₂} in f₁f₂ is not divisible by p.]
 - (b) Let α be an algebraic number and let f ∈ Q[x] be the minimal polynomial of α. Use part (a) to prove that α is an algebraic integer if and only if f ∈ Z[x]. [Hint: for the forward direction, suppose α is an algebraic integer and let g ∈ Z[x] be a monic polynomial having α as a root. Use that in Q[x], we have g = fh for some h.]
 - (c) Let D be a positive square-free integer, and recall that $\mathbb{Q}[\sqrt{D}] = \{a + b\sqrt{D}: a, b \in \mathbb{Q}\}$. Prove the following. If D is congruent to 2 or 3 modulo 4, then the set of algebraic integers in $\mathbb{Q}[\sqrt{D}]$ is $\{a + b\sqrt{D}: a, b \in \mathbb{Z}\}$. If $D \equiv 1 \pmod{4}$, then the set of algebraic integers in $\mathbb{Q}[\sqrt{D}]$ is $\{a + b((-1 + \sqrt{D})/2): a, b \in \mathbb{Z}\}$. [Hint: Show that $r + s\sqrt{D}$ is a root of $x^2 - 2rx + (r^2 - Ds^2)$, and apply part (b).]
- 5. [IR 6.8] Let $\omega = e^{2\pi i/3}$ and recall that ω is a root of $\omega^3 1$. Show that $(2\omega + 1)^2 = -3$ and use this to determine $\left(\frac{-3}{p}\right)$ by the new method of congruence over the algebraic integers (see Section 6.2 in the text). [Hint: begin by raising both sides to the power (p-1)/2.]
- 6. [IR 6.16] Let $f \in \mathbb{Q}[z]$ be a monic, irreducible polynomial. Show that f has distinct roots over \mathbb{C} . [Hint: if $f = (x \alpha)^2 g$ for some $\alpha \in \mathbb{C}$, then show that $f'(\alpha) = 0$ where f' is the derivative of f.]
- 7. [IR 6.19] Find the conjugates of $\cos(2\pi/5)$.