Directions: Solve the following problems. See the course syllabus and the Homework Webpage on the course website for general directions and guidelines.

1. [IR $5 .\{26,27,28\}]$ Let p be a prime such that $p \equiv 1(\bmod 4)$. An integer c is called a biquadratic residue modulo p if $p \nmid c$ and $x^{4} \equiv c(\bmod p)$ has a solution. Since $p \equiv 1$ $(\bmod 4)$, from an exercise on HW3, we know that $p=a^{2}+b^{2}$ for some integers a and b with $1 \leq a, b<\sqrt{p}$. By symmetry, we may assume that a is odd and b is even.
(a) Prove that $\left(\frac{a}{p}\right)=1$ and $\left(\frac{a+b}{p}\right)=(-1)^{\left((a+b)^{2}-1\right) / 8}$. [Hint: since a and $a+b$ are odd, the Jacobi symbols $\left(\frac{p}{a}\right)$ and $\left(\frac{p}{a+b}\right)$ are well defined.]
(b) Prove that $(a+b)^{2} \equiv 2 a b(\bmod p)$ and conclude that $(a+b)^{(p-1) / 2} \equiv(2 a b)^{(p-1) / 4}$ $(\bmod p)$.
(c) Let f be an integer such that $b \equiv a f(\bmod p)$. Show that $f^{2} \equiv-1(\bmod p)$ and that $2^{(p-1) / 4} \equiv f^{a b / 2}(\bmod p)$.
(d) Show that c is a biquadratic residue modulo p if and only if $c^{(p-1) / 4} \equiv 1(\bmod p)$.
(e) Show that $($ for $p \equiv 1(\bmod 4))$, the integer 2 is a biquadratic residue modulo p if and only if $p=A^{2}+64 B^{2}$ for some integers A and B.
2. [IR 6.1] Show that $\sqrt{2}+\sqrt{3}$ is an algebraic integer. [Hint: closure properties.]
3. [IR 6.2] Let α be an algebraic number. Show that there is an integer n such that $n \alpha$ is an algebraic integer.
4. [IR $6 .\{4,5,7\}]$ Algebraic integers in $\mathbb{Q}[\sqrt{D}]$ for a square-free integer D.
(a) Gauss's Lemma. A polynomial $f \in \mathbb{Z}[x]$ is primitive if the greatest common divisor of its coefficients is 1 . Prove that the product of primitive polynomials is again primitive. [Hint: let f_{1} and f_{2} be primitive polynomials in $\mathbb{Z}[x]$ and let p be a prime. Since f_{i} is primitive, there is a least integer r_{i} such that the coefficient of $x^{r_{i}}$ in f_{i} is not divisible by p. Argue that the coefficient of $x^{r_{1}+r_{2}}$ in $f_{1} f_{2}$ is not divisible by p.]
(b) Let α be an algebraic number and let $f \in \mathbb{Q}[x]$ be the minimal polynomial of α. Use part (a) to prove that α is an algebraic integer if and only if $f \in \mathbb{Z}[x]$. [Hint: for the forward direction, suppose α is an algebraic integer and let $g \in \mathbb{Z}[x]$ be a monic polynomial having α as a root. Use that in $\mathbb{Q}[x]$, we have $g=f h$ for some h.]
(c) Let D be a positive square-free integer, and recall that $\mathbb{Q}[\sqrt{D}]=\{a+b \sqrt{D}: a, b \in \mathbb{Q}\}$. Prove the following. If D is congruent to 2 or 3 modulo 4 , then the set of algebraic integers in $\mathbb{Q}[\sqrt{D}]$ is $\{a+b \sqrt{D}: a, b \in \mathbb{Z}\}$. If $D \equiv 1(\bmod 4)$, then the set of algebraic integers in $\mathbb{Q}[\sqrt{D}]$ is $\{a+b((-1+\sqrt{D}) / 2): a, b \in \mathbb{Z}\}$. [Hint: Show that $r+s \sqrt{D}$ is a root of $x^{2}-2 r x+\left(r^{2}-D s^{2}\right)$, and apply part (b).]
5. [IR 6.8] Let $\omega=e^{2 \pi i / 3}$ and recall that ω is a root of $\omega^{3}-1$. Show that $(2 \omega+1)^{2}=-3$ and use this to determine $\left(\frac{-3}{p}\right)$ by the new method of congruence over the algebraic integers (see Section 6.2 in the text). [Hint: begin by raising both sides to the power $(p-1) / 2$.]
6. [IR 6.16] Let $f \in \mathbb{Q}[z]$ be a monic, irreducible polynomial. Show that f has distinct roots over \mathbb{C}. [Hint: if $f=(x-\alpha)^{2} g$ for some $\alpha \in \mathbb{C}$, then show that $f^{\prime}(\alpha)=0$ where f^{\prime} is the derivative of f.]
7. [IR 6.19] Find the conjugates of $\cos (2 \pi / 5)$.
