Directions: Solve the following problems. See the course syllabus and the Homework Webpage on the course website for general directions and guidelines.

1. $[\operatorname{IR~} 4 .\{21,4,6\}]$
(a) Let g be a primitive root modulo m. Show that the order of g^{s} in $U(\mathbb{Z} / m \mathbb{Z})$ is $\phi(m) / \operatorname{gcd}(s, \phi(m))$.
(b) Let p be a prime of the form $4 t+1$. Prove that a is a primitive root modulo p if and only if $-a$ is a primitive root modulo p.
(c) Prove that if p is prime and equals $2^{n}+1$ for $n \geq 2$ (i.e. p is a Fermat prime), then 3 is a primitive root modulo p. Hint: First show that if 3 is not a primitive root, then $-3 \equiv a^{2}(\bmod p)$ for some a. Next, show that there is an integer u such that $2 u \equiv-1+a$ $(\bmod p)$ and then argue that u has order 3 in $U(\mathbb{Z} / p \mathbb{Z})$. Apply Lagrange's theorem to the subgroup generated by u.
2. [IR 4.11] Prove that $1^{k}+2^{k}+\cdots+(p-1)^{k}$ is congruent to 0 modulo p if $p-1 \nmid k$ and congruent to -1 modulo p if $p-1 \mid k$.
3. [IR 4.19] Determine, without resorting to exhaustive case analysis, the numbers a such that $x^{3} \equiv a(\bmod p)$ is solvable for $p \in\{7,11,13\}$.
4. [IR 4.22] Show that if a has order 3 modulo p, then $1+a$ has order 6 modulo p.
5. [IR 5.3] Suppose that $p \nmid a$. Show that the number of solutions to $a x^{2}+b x+c \equiv 0(\bmod p)$ is given by $1+\left(\frac{b^{2}-4 a c}{p}\right)$.
6. [IR 5. $\{6,7,8\}$] Let p be an odd prime.
(a) Show that the number of solutions to $x^{2}-y^{2} \equiv a(\bmod p)$ is given by $\sum_{y=0}^{p-1}\left(1+\left(\frac{y^{2}+a}{p}\right)\right)$.
(b) By calculating directly show that the number of solutions to $x^{2}-y^{2} \equiv a(\bmod p)$ is $p-1$ if $p \nmid a$ and $2 p-1$ if $p \mid a$. Hint: use the change of variables $u=x+y$ and $v=x-y$.
(c) Using (a) and (b), show that

$$
\sum_{y=0}^{p-1}\left(\frac{y^{2}+a}{p}\right)= \begin{cases}-1 & \text { if } p \nmid a \\ p-1 & \text { if } p \mid a\end{cases}
$$

7. [IR 5.13]
(a) Show that any prime divisor of $x^{4}-x^{2}+1$ is congruent to 1 modulo 12. Hint: show that if $p \mid x^{4}-x^{2}+1$, then $x^{6} \equiv-1(\bmod p)$. What is the order of x ?
(b) Use part (a) to show that there are infinitely primes congruent to 1 modulo 12.
8. [IR 5.16] Using quadratic reciprocity find the primes for which 7 is a quadratic residue; do the same for 15 .
9. [IR 5. $\{23,24\}$] Let p be a prime congruent to 1 modulo 4 .
(a) Show that there exist integers s and t such that $p t=s^{2}+1$. Conclude that p is not a prime in $\mathbb{Z}[i]$.
(b) Show that p is the sum of two squares; that is, $p=a^{2}+b^{2}$ for some $a, b \in \mathbb{Z}$. Hint: let $p=\alpha \beta$ for nonunit $\alpha, \beta \in \mathbb{Z}[i]$. Take the magnitude-squared of both sides, and recall the characterization of the units in $\mathbb{Z}[i]$.
