Directions: Solve the following problems. See the course syllabus and the Homework Webpage on the course website for general directions and guidelines.

- 1. [IR $4.\{21,4,6\}$]
 - (a) Let g be a primitive root modulo m. Show that the order of g^s in $U(\mathbb{Z}/m\mathbb{Z})$ is $\phi(m)/\gcd(s,\phi(m))$.
 - (b) Let p be a prime of the form 4t + 1. Prove that a is a primitive root modulo p if and only if -a is a primitive root modulo p.
 - (c) Prove that if p is prime and equals $2^n + 1$ for $n \ge 2$ (i.e. p is a Fermat prime), then 3 is a primitive root modulo p. *Hint*: First show that if 3 is not a primitive root, then $-3 \equiv a^2 \pmod{p}$ for some a. Next, show that there is an integer u such that $2u \equiv -1+a \pmod{p}$ and then argue that u has order 3 in $U(\mathbb{Z}/p\mathbb{Z})$. Apply Lagrange's theorem to the subgroup generated by u.
- 2. [IR 4.11] Prove that $1^k + 2^k + \cdots + (p-1)^k$ is congruent to 0 modulo p if $p-1 \nmid k$ and congruent to -1 modulo p if $p-1 \mid k$.
- 3. [IR 4.19] Determine, without resorting to exhaustive case analysis, the numbers a such that $x^3 \equiv a \pmod{p}$ is solvable for $p \in \{7, 11, 13\}$.
- 4. [IR 4.22] Show that if a has order 3 modulo p, then 1 + a has order 6 modulo p.
- 5. [IR 5.3] Suppose that $p \nmid a$. Show that the number of solutions to $ax^2 + bx + c \equiv 0 \pmod{p}$ is given by $1 + \left(\frac{b^2 4ac}{p}\right)$.
- 6. [IR 5. $\{6,7,8\}$] Let p be an odd prime.
 - (a) Show that the number of solutions to $x^2 y^2 \equiv a \pmod{p}$ is given by $\sum_{y=0}^{p-1} (1 + \left(\frac{y^2 + a}{p}\right))$.
 - (b) By calculating directly show that the number of solutions to $x^2 y^2 \equiv a \pmod{p}$ is p-1 if $p \nmid a$ and 2p-1 if $p \mid a$. Hint: use the change of variables u = x + y and v = x y.
 - (c) Using (a) and (b), show that

$$\sum_{y=0}^{p-1} \left(\frac{y^2 + a}{p} \right) = \begin{cases} -1 & \text{if } p \nmid a \\ p-1 & \text{if } p \mid a \end{cases}$$

- 7. [IR 5.13]
 - (a) Show that any prime divisor of $x^4 x^2 + 1$ is congruent to 1 modulo 12. Hint: show that if $p \mid x^4 x^2 + 1$, then $x^6 \equiv -1 \pmod{p}$. What is the order of x?
 - (b) Use part (a) to show that there are infinitely primes congruent to 1 modulo 12.
- 8. [IR 5.16] Using quadratic reciprocity find the primes for which 7 is a quadratic residue; do the same for 15.
- 9. $[IR 5.{23,24}]$ Let p be a prime congruent to 1 modulo 4.
 - (a) Show that there exist integers s and t such that $pt = s^2 + 1$. Conclude that p is not a prime in $\mathbb{Z}[i]$.
 - (b) Show that p is the sum of two squares; that is, $p = a^2 + b^2$ for some $a, b \in \mathbb{Z}$. Hint: let $p = \alpha\beta$ for nonunit $\alpha, \beta \in \mathbb{Z}[i]$. Take the magnitude-squared of both sides, and recall the characterization of the units in $\mathbb{Z}[i]$.