Directions: Solve the following problems. See the course syllabus and the Homework Webpage on the course website for general directions and guidelines.

1. [IR 2.1] Let k be a finite field. Show that $k[x]$ has infinitely many irreducible polynomials.
2. [IR 2.21] Define $f(n)$ to be $\ln p$ when n is a positive power of some prime p and 0 otherwise. For example, $f(2)=f(4)=f(8)=\ln 2$ and $f(3)=f(9)=f(27)=\ln 3$ but $f(1)=f(6)=$ $f(10)=0$. Prove that $f(n)=\sum_{d \mid n} \mu(n / d) \ln d$. Hint: first calculate $\sum_{d \mid n} f(d)$ and then apply Möbius inversion.
3. [IR 2.25, 2.26(a)] Consider the Riemann zeta function $\zeta(s)$, defined by $\zeta(s)=\sum_{n \geq 1} \frac{1}{n^{s}}$. Note: by "formal identity", we mean an identity of formal power series.
(a) Prove the formal identity $\zeta(s)=\prod_{p} \frac{1}{1-p^{-s}}$.
(b) Prove the formal identity $\zeta(s)^{-1}=\sum_{n \geq 1} \frac{\mu(n)}{n^{s}}$.
4. [IR 2.27] A beautiful proof that $\sum_{p} 1 / p$ diverges. Let S_{n} be the set of square-free integers in $\{1,2, \ldots, n\}$. It may help to recall the following: $\sum_{j=1}^{n} 1 / j \geq \ln (n+1)$ and $\sum_{j=1}^{\infty} 1 / j^{2}=\pi^{2} / 6$.
(a) We have seen that for each positive integer n, there exist integers a and b such that a is square-free and $n=a b^{2}$. Prove that a and b are determined by n.
(b) Without using that $\sum_{p} 1 / p$ diverges (or the proof of this fact that we saw in class), show that $\sum_{j \in S_{n}} 1 / j \geq \frac{6}{\pi^{2}} \ln (n+1)$.
(c) Conclude that $\prod_{p \leq n}(1+1 / p) \geq \frac{6}{\pi^{2}} \ln (n+1)$.
(d) Since $e^{x} \geq 1+x$, conclude that $\sum_{p \leq n} 1 / p \geq \ln \ln (n+1)-\ln \frac{\pi^{2}}{6}$.
5. [IR 3.\{4,5\}] Show that the following equations have no integer solutions.
(a) $3 x^{2}+2=y^{2}$
(b) $7 x^{3}+2=y^{3}$
6. [IR 3. $\{12,13\}$] Recall that for a nonnegative integer n and elements x, y of a ring, we have that $(x+y)^{n}=\sum_{k=0}^{n}\binom{n}{k} x^{k} y^{n-k}$, where $\binom{n}{k}=\frac{n!}{k!(n-k)!}$.
(a) Let p be a prime. Show that if $1 \leq k \leq p-1$, then $p \left\lvert\,\binom{ p}{k}\right.$. Deduce that $(a+1)^{p} \equiv a^{p}+1$ $(\bmod p)$.
(b) Use (a) to give another proof of Fermat's theorem, $a^{p-1} \equiv 1(\bmod p)$ if $p \nmid a$.
7. [IR 3.\{23,24\}] Extend the notion of congruence to a ring and prove the following.
(a) $a+b i$ is congruent to 0 or 1 modulo $1+i$ in $\mathbb{Z}[i]$.
(b) $a+b \omega$ is congruent to $-1,0$, or 1 modulo $1-\omega$ in $\mathbb{Z}[\omega]$. Conclude that for all $\alpha \in \mathbb{Z}[\omega]$, we have that $\alpha^{3} \equiv \alpha(\bmod \lambda)$.
8. [IR 3. $\{25,26\}]$ Let $\lambda=1-\omega \in \mathbb{Z}[\omega]$.
(a) Prove that if $\alpha \in \mathbb{Z}[\omega]$ and $\alpha \equiv 1(\bmod \lambda)$, then $\alpha^{3} \equiv 1(\bmod 9)$. Hint: show first that $3=-\omega^{2} \lambda^{2}$.
(b) Use (a) to show that if $\beta, \gamma, \delta \in \mathbb{Z}[\omega]$ are not zero and $\beta^{3}+\gamma^{3}+\delta^{3}=0$, then λ divides at least one element in $\{\beta, \gamma, \delta\}$.
