Directions: Solve the following problems. See the course syllabus and the Homework Webpage on the course website for general directions and guidelines.

- 1. [IR 1.10] Suppose that (u, v) = 1. Show that (u + v, u v) is either 1 or 2.
- 2. [IR $1.\{15,18\}$]
 - (a) Prove that a positive integer a is the square of another integer if and only if $\operatorname{ord}_p a$ is even for all primes p. Give a generalization.
 - (b) Let *m* be a positive integer. Prove that $m^{1/n}$ is irrational if *m* is not the *n*th power of an integer. (In other words, prove that there do not exist integers *a* and *b* such that $m^{1/n} = \frac{a}{h}$ if *m* is not the *n*th power of an integer.)
- 3. [IR 1.21] Prove that $\operatorname{ord}_p(a+b) \geq \min(\operatorname{ord}_p a, \operatorname{ord}_p b)$ with equality when $\operatorname{ord}_p a \neq \operatorname{ord}_p b$.
- 4. [IR $1.\{24,26\}$]
 - (a) Prove the following.
 - i. $x^n y^n = (x y)(x^{n-1} + x^{n-2}y + \dots + y^{n-1})$ ii. If n is odd, then $x^n + y^n = (x + y)(x^{n-1} - x^{n-2}y + x^{n-3}y^2 \dots + y^{n-1}).$
 - (b) Let a and n be positive integers. Prove that if $a \ge 2$ and $a^n + 1$ is a prime, then a is even and n is a power of two. (Primes of the form $2^{2^t} + 1$ are called Fermat primes. It is not known if there are infinitely many primes.)
- 5. [IR 1.34] Show that 3 is divisible by $(1 \omega)^2$ in $\mathbb{Z}[\omega]$.
- 6. [IR $1.\{33,38\}$]
 - (a) Show that $\alpha \in \mathbb{Z}[i]$ is a unit if and only if $\lambda(\alpha) = 1$. Deduce that the set of units of $\mathbb{Z}[i]$ is $\{1, -1, i, -i\}$.
 - (b) Suppose that $\pi \in \mathbb{Z}[i]$ and that $\lambda(\pi)$ is a prime in the integers. Show that π is prime in $\mathbb{Z}[i]$.
- 7. [IR 1.39] Show that in any integral domain, a prime element is irreducible.