Name: \qquad
Directions: All questions require explanation in English sentences.

1. [10 points] The midpoints of the sides of a square are joined to form another square, and this process is repeated. The outer square has side length 1 . What is the total area of the shaded regions?

2. [$\mathbf{2}$ parts, $\mathbf{5}$ points each] Consider the following argument.

Theorem 1. If n is an integer and $n \geq 5$, then $n^{2}-16$ is not prime.
Proof: Using algebra, we see that $n^{2}-16=(n+4)(n-4)$. Since $n+4$ divides $n^{2}-16$, we conclude that $n^{2}-16$ is not prime.
(a) Execute the proof firstly for $n=5$ and secondly for $n=6$.
(b) Analyze the proof above. Is it a valid proof? If not, can it be corrected? If possible, how would you correct it?
3. [$\mathbf{2}$ parts, $\mathbf{5}$ points each] Consider the following argument.

Theorem 2. If a and b are nonnegative real numbers, then $(a+b) / 2 \geq \sqrt{a b}$.
Proof: Since the square of a real number is nonnegative, we have $(a-b)^{2} \geq 0$. Expanding the left hand side, we obtain $a^{2}-2 a b+b^{2} \geq 0$. Adding $4 a b$ to both sides, we see that $a^{2}+2 a b+b^{2} \geq 4 a b$, or $(a+b)^{2} \geq(2 \sqrt{a b})^{2}$. Since $a+b \geq 0$ and $2 \sqrt{a b} \geq 0$, we may take the square root of both sides, obtaining $a+b \geq 2 \sqrt{a b}$. Dividing both sides by 2 , we conclude $(a+b) / 2 \geq \sqrt{a b}$.
(a) Execute the proof for $a=3$ and $b=5$.
(b) Analyze the proof above. Is it a valid proof? If not, can it be corrected? If possible, how would you correct it?
4. [5 points] One of the following implications is true and the other is false. Identify which is which. Prove the true implication and find a counterexample for the other. Let a be a real number.

- If a^{2} is irrational, then a is irrational.
- If a is irrational, then a^{2} is irrational.

5. [5 points] For which real values of a is the polynomial $x+a$ a factor of $x^{3}+3 a x^{2}-a$?
6. [4 parts, $\mathbf{2} .5$ points each] Let $\left({ }^{*}\right)$ be the equation $3 x^{2}+(x-1) y=4$. Decide whether the following statements are true or false. Explain your answer.
(a) For each real number x and each real number y, the pair x, y satisfies $\left(^{*}\right)$.
(b) There exists a real number x such that for each real number y, the pair x, y satisfies $\left(^{*}\right)$.
(c) For each real number x, there exists a real number y such that the pair x, y satisfies $\left(^{*}\right)$.
(d) For each real number y, there exists a real number x such that the pair x, y is satisfies (*).
7. [10 points] Let f and g be polynomials of degree at most n, and suppose that a_{1}, \ldots, a_{n+1} are distinct real numbers such that $f\left(a_{i}\right)=g\left(a_{i}\right)$ for each i. Prove that $f=g$. Hint: let $h(x)=f(x)-g(x)$. What can you say about the degree of h ?
