Directions: You may work to solve these problems in groups, but all written work must be your own. Show your work; See "Guidelines and advice" on the course webpage for more information.

1. Let A and B be finite sets. Either prove or give a counterexample to each of the following statements below.
(a) If $A \in B$, then $|A| \leq|B|$.
(b) If $A \subseteq B$, then $|A| \leq|B|$.
2. Recall that when n is a nonnegative integer, $[n]=\{1,2,3, \ldots, n\}$. Write out the elements of $\{a, b\} \times[3]$. How many are there?
3. What is $\varnothing \times \mathbb{Z}$?
4. Let U be a universe of elements, and let A and B be subsets of U. Prove that $\overline{A \cup B}=\bar{A} \cap \bar{B}$.
5. A characterization of a set equation.
(a) Give an example of nonempty sets A, B, and C such that $(A \cap B) \cup C=A \cap(B \cup C)$.
(b) Give an example of sets A, B, and C such that $(A \cap B) \cup C=A \cap(B \cup C)$ does not hold.
(c) Find and prove a characterization for when $(A \cap B) \cup C=A \cap(B \cup C)$ holds.
6. Let $P=\{x \in \mathbb{N}: 1 \leq x \leq 10$ and x is prime $\}$. Compute $\sum_{x \in P}(x+1)$ and $\prod_{x \in P}(x-1)$.
7. For every $n \in \mathbb{N}$, let $S_{n}=\left\{x \in \mathbb{R}:-\frac{1}{n}<x<\frac{1}{n}\right\}$. Prove that $\bigcap_{n \in \mathbb{N}} S_{n}=\{0\}$.
