Directions: You may work to solve these problems in groups, but all written work must be your own. Show your work; See "Guidelines and advice" on the course webpage for more information.

1. At a party with n people, every person shakes hands with every other person.
(a) For $n=2, n=3, n=4$, and $n=5$, how many handshakes are there?
(b) Find a formula for the total number of handshakes. Justify your answer.
2. [S 3.3.7.2] Consider the set $S=\{3,4,5,6\}$. Define S in two different ways using set-builder notation.
3. [S 3.3.7.5] Give an example of sets A, B, C such that $A \in B, B \in C$, but $A \notin C$.
4. Let A, B, and C be sets. Prove that if $A \subseteq B$ and $B \subseteq C$, then $A \subseteq C$.
5. [S 3.3.7.6] Write a definition of the set of odd integers using set-builder notation. (Note: -1 is an odd integer.)
6. [S 3.3.7.8] Let $A=\left\{x \in \mathbb{R}: x^{2}-3 x+2 \geq 0\right\}$ and $B=\{y \in \mathbb{R}: y \leq 1$ or $y \geq 2\}$. Prove that $A=B$.
7. [S 3.3.7.9] Let $C=\left\{x \in \mathbb{R}: x^{2}-4 \geq 0\right\}$ and $D=\{y \in \mathbb{R}: y \geq 2\}$. Is $C=D$? Why or why not? Write your explanation with good mathematical notation, using \in and \notin.
8. Find a real number x such that $x>1$ and $x+\frac{1}{x}$ is an integer.
