Directions: You may work to solve these problems in groups, but all written work must be your own. **Show your work**; See "Guidelines and advice" on the course webpage for more information.

- 1. At a party with n people, every person shakes hands with every other person.
 - (a) For n = 2, n = 3, n = 4, and n = 5, how many handshakes are there?
 - (b) Find a formula for the total number of handshakes. Justify your answer.
- 2. [S 3.3.7.2] Consider the set $S = \{3, 4, 5, 6\}$. Define S in two different ways using set-builder notation.
- 3. [S 3.3.7.5] Give an example of sets A, B, C such that $A \in B, B \in C$, but $A \notin C$.
- 4. Let A, B, and C be sets. Prove that if $A \subseteq B$ and $B \subseteq C$, then $A \subseteq C$.
- 5. [S 3.3.7.6] Write a definition of the set of odd integers using set-builder notation. (Note: -1 is an odd integer.)
- 6. [S 3.3.7.8] Let $A = \{x \in \mathbb{R} : x^2 3x + 2 \ge 0\}$ and $B = \{y \in \mathbb{R} : y \le 1 \text{ or } y \ge 2\}$. Prove that A = B.
- 7. [S 3.3.7.9] Let $C = \{x \in \mathbb{R} : x^2 4 \ge 0\}$ and $D = \{y \in \mathbb{R} : y \ge 2\}$. Is C = D? Why or why not? Write your explanation with good mathematical notation, using \in and \notin .
- 8. Find a real number x such that x > 1 and $x + \frac{1}{x}$ is an integer.