Directions: You may work to solve these problems in groups, but all written work must be your own. **Show your work**; See "Guidelines and advice" on the course webpage for more information.

1. [S 1.5.20] Three friends buy a bag of M&M candies. They plan to divide the bag the next day. During the night, one of the friends gets hungry, and decides to eat her share. She divides the candies into 3 equal piles, with 1 M&M left over. She eats her share, and, she impulsively eats the extra. At later points in the night, the two other friends do the same thing. Both times, there is a single extra M&M which is impulsively eaten. The next day, the friends divide the remaining M&M's into three equal parts, and no one mentions the activity the previous night.

How many M&M's might the bag initially contain? Find all possible answers.

- 2. $[S 1.3.{5,6}]$ Find all possible values of a such that:
 - (a) x a is a factor of $x^2 + 2ax 3$.
 - (b) x + a is a factor of $x^3 + a$.
- 3. [S 1.3.7] Let $n \ge 1$. Find a root of $x^n 1 = 0$ and use it to factor $x^n 1$ into a polynomial of degree 1 and a polynomial of degree n 1.
- 4. [S 1.3.10] Some quartic polynomials.
 - (a) Find all real solutions to $x^4 7x^2 + 18 = 0$.
 - (b) Describe how to find all real solutions to $ax^4 + bx^2 + c = 0$.
- 5. Positive expressions
 - (a) Prove that for all real numbers a and b, the inequality $a^2 2ab + b^2 \ge 0$ holds.
 - (b) Prove that for all real numbers a and b, the inequality $a^2 ab + b^2 \ge 0$ holds.
- 6. Let a and b be real numbers such that ab and a + b are integers.
 - (a) Find an example that shows that a^2 and b^2 need not be integers.
 - (b) Show that $a^2 + b^2$ is an integer.