Directions: You may work to solve these problems in groups, but all written work must be your own. Show your work; See "Guidelines and advice" on the course webpage for more information.

1. [S 1.5.20] Three friends buy a bag of M\&M candies. They plan to divide the bag the next day. During the night, one of the friends gets hungry, and decides to eat her share. She divides the candies into 3 equal piles, with $1 \mathrm{M} \& \mathrm{M}$ left over. She eats her share, and, she impulsively eats the extra. At later points in the night, the two other friends do the same thing. Both times, there is a single extra M\&M which is impulsively eaten. The next day, the friends divide the remaining M\&M's into three equal parts, and no one mentions the activity the previous night.

How many M\&M's might the bag initially contain? Find all possible answers.
2. [S 1.3. $\{5,6\}]$ Find all possible values of a such that:
(a) $x-a$ is a factor of $x^{2}+2 a x-3$.
(b) $x+a$ is a factor of $x^{3}+a$.
3. [S 1.3.7] Let $n \geq 1$. Find a root of $x^{n}-1=0$ and use it to factor $x^{n}-1$ into a polynomial of degree 1 and a polynomial of degree $n-1$.
4. [S 1.3.10] Some quartic polynomials.
(a) Find all real solutions to $x^{4}-7 x^{2}+18=0$.
(b) Describe how to find all real solutions to $a x^{4}+b x^{2}+c=0$.
5. Positive expressions
(a) Prove that for all real numbers a and b, the inequality $a^{2}-2 a b+b^{2} \geq 0$ holds.
(b) Prove that for all real numbers a and b, the inequality $a^{2}-a b+b^{2} \geq 0$ holds.

6 . Let a and b be real numbers such that $a b$ and $a+b$ are integers.
(a) Find an example that shows that a^{2} and b^{2} need not be integers.
(b) Show that $a^{2}+b^{2}$ is an integer.

