Directions: You may work to solve these problems in groups, but all written work must be your own. Show your work; See "Guidelines and advice" on the course webpage for more information.

1. [S 1.3.8] Determine the value of x defined by $x=\sqrt{2+\sqrt{2+\sqrt{2+\cdots}}}$.
2. [S 1.5.19] You have two strings of fuse. Each will burn for exactly one hour. The fuses are not necessarily identical, though, and do not burn at a constant rate. All you have with you is a lighter and these two fuses. Can you measure exactly 45 minutes? If so, explain how. If not, explain why.
3. Irrational numbers.
(a) Prove that $1+\sqrt{2}$ is irrational.
(b) Prove that $\sqrt{2}+\sqrt{3}$ is irrational.
4. Evaluate the following mathematical argument. Is it clearly written? Does it use correct logic? If not, can it be fixed?

Theorem 1. If p_{1}, \ldots, p_{k} are the first k primes, then $p_{1} p_{2} \cdots p_{k}+1$ is also a prime.
Proof: Let $n=p_{1} p_{2} \cdots p_{k}+1$, and note that $1=n-p_{1} p_{2} \cdots p_{k}$.
Suppose for a contradiction that some prime p_{i} less than n divides n. If this were true, then p_{i} divides both terms on the right hand side of $1=n-p_{1} p_{2} \cdots p_{k}$ and therefore p_{i} must also divide the left hand side of this equation. Since no prime divides 1 , we have a contradiction.
The contradiction implies that no prime less than n divides n, and therefore n is prime.

