Directions: You may work to solve these problems in groups, but all written work must be your own. Show your work; See "Guidelines and advice" on the course webpage for more information.

1. Prove that $\sum_{j=1}^{n} j^{2}=\frac{n(n+1)(2 n+1)}{6}$ for each $n \in \mathbb{N}$.
2. Recall the Fibonacci sequence defined by $f_{0}=0, f_{1}=1$ and $f_{n}=f_{n-1}+f_{n-2}$ for $n \geq 2$. Prove that $f_{n-1} f_{n+1}=f_{n}^{2}+(-1)^{n}$ for each $n \in \mathbb{N}$.
3. Suppose that x_{1}, \ldots, x_{n} are real numbers in the interval $[0,1]$. Prove that $\prod_{i=1}^{n}\left(1-x_{i}\right) \geq$ $1-\sum_{i=1}^{n} x_{i}$.
4. Prove that each positive integer n can be written as a sum of powers of 3 in which each power is used at most twice. For example, $306=3^{5}+3^{3}+3^{3}+3^{2}$.
5. Let $A=\left\{(x, y) \in \mathbb{Z}^{2}: 0 \leq x \leq 40\right.$ and $\left.0 \leq y \leq 80\right\}$. Staring from position $(0,0)$, two players alternate turns. In each turn, a player increases one of the coordinates and leaves the other unchanged to obtain a new position in A. The player who reaches position $(40,80)$ first wins. Prove that the first player has a strategy to win no matter how the second player moves.
