Name: \qquad
Directions: Show all work unless directed otherwise. No credit for answers without work.

1. [5 points] Short Answer. Jesse and Marie use a simple Caeser cipher to exchange secret messages in social studies class. (They would never do such a thing in their mathematics classes.) You hear Jesse boast that their secret key k is the best possible key since it makes the processes of encoding and decoding exactly the same. Assuming that their encryption scheme is non-trivial (i.e. $k \neq 0$), what is k ?
2. [10 points] Is the following statement true or false? Let a, b, and c be integers. If $a \mid b+c$, then $a \mid b$ and $a \mid c$. If the statement is true, give a proof. If the statement is false, give a counterexample (that is, a specific example of particular integers a, b, and c for which the statement fails).
3. [5 points] Find the quotient q and remainder r that results from dividing -308 by 86 .
4. [5 points] Give 3 different examples of integers that are congruent to 79 modulo 145 . If possible, one of your examples should be negative.
5. Proofs.
(a) [15 points] Let a and b be integers. Prove that if there exist integers u and v such that $u a+v b=1$, then $\operatorname{gcd}(a, b)=1$.
(b) [15 points] Let x and y be integers, not both zero, and let $d=\operatorname{gcd}(x, y)$. Prove that $\operatorname{gcd}\left(\frac{x}{d}, \frac{y}{d}\right)=1$.
6. [20 points] Use the extended Euclidean algorithm to find $\operatorname{gcd}(28543,32147)$ and express it as an integer combination of 28543 and 32147.
7. [15 points] Solve for x in $424 x \equiv 19(\bmod 643)$.
8. The group of units.
(a) [5 points] Give the multiplication table for \mathbb{Z}_{10}^{*}.
(b) [5 points] What is $\phi(10)$?
