Name: \qquad
Directions: Show all work. No credit for answers without work.

1. [2 points] Give a definition of $\operatorname{ord}_{p}(n)$. (There are several equivalent ways to define this; give only one.)
2. [2 points] Find $\operatorname{ord}_{7}(4900)$.
3. [$\mathbf{2}$ points] Give 3 different examples of an integer n that satisfies $\operatorname{ord}_{2}(n)=3$.
4. [$\mathbf{2}$ points] Let m be a positive integer and let p be a prime. For each algebraic structure below, circle the arithmetic operations that are well-behaved.
(a) \mathbb{Z}_{m}^{*}
$+-\times \div$
(b) \mathbb{F}_{p}
(c) \mathbb{Z}_{m}
$+-\times \div$
$+-\times \div$
5. [2 points] Let a and b be positive integers such that $\operatorname{ord}_{2}(a)=\operatorname{ord}_{2}(b)$. Let k be the common order of 2 in both a and b; that is, $k=\operatorname{ord}_{2}(a)$ and $k=\operatorname{ord}_{2}(b)$. Prove that if $\operatorname{ord}_{2}(a+b) \geq k+1$.
