Directions: Solve 5 of the following 6 problems. See the course syllabus and the Homework Webpage on the course website for general directions and guidelines.

1. [CM 10.1.12] Given positive integers p and q, let $f(p, q)$ be the largest m such that there is some set of m distinct integers in the interval $[-p, q]$ not containing three integers that sum to 0 . Show that $1+\max \{p, q\} \leq f(p, q) \leq 2+\max \{p, q\}$. (Note: it is possible to show that $f(p, q)=1+\max \{p, q\}$ except when p and q are the same even integer, in which case $f(p, q)=2+\max \{p, q\}$.)
2. [CM 10.1.30] Place n points on a circle. Let $G_{n, k}$ be the $2 k$-regular graph defined on these points by joining each point to the k nearest points in each direction on the circle. For example, $G_{n, 1}$ is the n-vertex cycle C_{n}, and $G_{7,2}$ appears below. For $k \geq 2$, prove that $\chi\left(G_{n, k}\right)>k+2$ if $n=k(k+1)-1$ and $\chi\left(G_{n, k}\right) \leq k+2$ if $n \geq k(k+1)$.

3. [CM 10.2.9] Let S be a set of $R(m, m ; 3)$ points in the plane no three of which are collinear. Prove that S contains m points that form a convex m-gon.
4. [CM 10.2.25] The graph $m K_{2}$ is the 1-regular graph on $2 m$ vertices. (The notation $m K_{2}$ is used since this graph is formed from m disjoint copies of K_{2}.) Prove that $R\left(m K_{2}, m K_{2}\right)=3 m-1$.
5. [CM 10.2.31] Let G be an n-vertex graph with m edges. For each vertex v in G, let $d(v)$ be the degree of v.
(a) Prove that if $\sum_{v \in V(G)}\binom{d(v)}{2}>\binom{n}{2}$, then G contains a 4-cycle.
(b) Prove that if $m>\frac{n}{4}(1+\sqrt{4 n-3})$, then G contains a 4 -cycle. (Note: in the language of Turán theory, this shows that $\operatorname{ex}\left(n ; C_{4}\right) \leq \frac{n}{4}(1+\sqrt{4 n-3}) \leq\left(2 n^{3 / 2}+n\right) / 4$.) (Hint: let $f(x)=x(x-1) / 2$. Since $f^{\prime \prime}(x)>0$, a convexity argument shows that subject to $x_{1}+\cdots+x_{k}=t$, the sum $f\left(x_{1}\right)+\cdots+f\left(x_{k}\right)$ is minimized when $x_{1}=x_{2}=\cdots=x_{k}=t / k$. You do not need to prove the convexity result in your homework, but you should try to prove it for yourself at least for the case $g(x)=x^{2}$.)
(c) Recall that $R_{k}\left(C_{4}\right)$ is the least integer n such that every k-edge-coloring of K_{n} contains a monochromatic copy of C_{4}. Prove that $R_{k}\left(C_{4}\right) \leq k^{2}+k+2$. (Comment: using difference sets, there is a lower bound of $k^{2}-k+2$.)
6. [CM 11.2. $\{4,5,12\}$] In each of the following, prove your answer is correct.
(a) Two permutations (in word form) intersect if they agree in some position. Determine the maximum size of an intersecting family of permutations of $[n]$.
(b) Does every maximal intersecting family of subsets in $[n]$ have size 2^{n-1} ?
(c) Let D_{n} be the digraph on n vertices that contains an edge from u to v for each ordered pair (u, v). An r-edge-coloring is good if, for each u, v, w with $u \neq v$ and $v \neq w$ (we allow $u=w$), the color on $u v$ is different from the color on $v w$. For each r, determine the maximum n such that D_{n} has a good r-edge-coloring. Hint: use Sperner's Theorem (Theorem 11.2.11).
