Directions: Solve 5 of the following 6 problems. See the course syllabus and the Homework Webpage on the course website for general directions and guidelines.

- 1. [CM 10.1.12] Given positive integers p and q, let f(p,q) be the largest m such that there is some set of m distinct integers in the interval [-p,q] not containing three integers that sum to 0. Show that $1 + \max\{p,q\} \le f(p,q) \le 2 + \max\{p,q\}$. (Note: it is possible to show that $f(p,q) = 1 + \max\{p,q\}$ except when p and q are the same even integer, in which case $f(p,q) = 2 + \max\{p,q\}$.)
- 2. [CM 10.1.30] Place n points on a circle. Let $G_{n,k}$ be the 2k-regular graph defined on these points by joining each point to the k nearest points in each direction on the circle. For example, $G_{n,1}$ is the n-vertex cycle C_n , and $G_{7,2}$ appears below. For $k \ge 2$, prove that $\chi(G_{n,k}) > k+2$ if n = k(k+1) 1 and $\chi(G_{n,k}) \le k+2$ if $n \ge k(k+1)$.

- 3. [CM 10.2.9] Let S be a set of R(m, m; 3) points in the plane no three of which are collinear. Prove that S contains m points that form a convex m-gon.
- 4. [CM 10.2.25] The graph mK_2 is the 1-regular graph on 2m vertices. (The notation mK_2 is used since this graph is formed from m disjoint copies of K_2 .) Prove that $R(mK_2, mK_2) = 3m 1$.
- 5. [CM 10.2.31] Let G be an n-vertex graph with m edges. For each vertex v in G, let d(v) be the degree of v.
 - (a) Prove that if $\sum_{v \in V(G)} {\binom{d(v)}{2}} > {\binom{n}{2}}$, then G contains a 4-cycle.
 - (b) Prove that if $m > \frac{n}{4}(1 + \sqrt{4n-3})$, then G contains a 4-cycle. (Note: in the language of Turán theory, this shows that $ex(n; C_4) \le \frac{n}{4}(1 + \sqrt{4n-3}) \le (2n^{3/2} + n)/4$.) (Hint: let f(x) = x(x-1)/2. Since f''(x) > 0, a convexity argument shows that subject to $x_1 + \cdots + x_k = t$, the sum $f(x_1) + \cdots + f(x_k)$ is minimized when $x_1 = x_2 = \cdots = x_k = t/k$. You do not need to prove the convexity result in your homework, but you should try to prove it for yourself at least for the case $g(x) = x^2$.)
 - (c) Recall that $R_k(C_4)$ is the least integer *n* such that every *k*-edge-coloring of K_n contains a monochromatic copy of C_4 . Prove that $R_k(C_4) \leq k^2 + k + 2$. (Comment: using difference sets, there is a lower bound of $k^2 k + 2$.)
- 6. [CM 11.2.{4,5,12}] In each of the following, prove your answer is correct.
 - (a) Two permutations (in word form) **intersect** if they agree in some position. Determine the maximum size of an intersecting family of permutations of [n].
 - (b) Does every maximal intersecting family of subsets in [n] have size 2^{n-1} ?

(c) Let D_n be the digraph on n vertices that contains an edge from u to v for each ordered pair (u, v). An r-edge-coloring is **good** if, for each u, v, w with $u \neq v$ and $v \neq w$ (we allow u = w), the color on uv is different from the color on vw. For each r, determine the maximum n such that D_n has a good r-edge-coloring. Hint: use Sperner's Theorem (Theorem 11.2.11).