Directions: Solve 5 of the following 6 problems. Students seeking higher than 500 level credit must complete all 6 problems. See the course syllabus and the Homework Webpage on the course website for general directions and guidelines that apply to all homeworks.

1. [CM 1.2. $\{16,15\}]$ Prove the first three identities below by counting a set in two ways. In each case, give a single direct argument without manipulating the formulas. In part (d), find a closed form solution for the sum and give a combinatorial proof.
(a) $\binom{2 n}{n}=2\binom{2 n-1}{n-1}$
(c) $\sum_{i=1}^{n} i(n-i)=\sum_{i=1}^{n}\binom{i}{2}$
(b) $\sum_{k}\binom{k}{l}\binom{n}{k}=\binom{n}{l} 2^{n-l}$
(d) $\sum_{j=1}^{m}(m-j) 2^{j-1}$
2. [CM 1.2.19] Evaluate the following sums using known identities.
(a) $\sum_{k \geq 0} \frac{1}{k+1}\binom{n}{k}$
(b) $\sum_{k=0}^{n}(-1)^{k}\binom{n}{k} \frac{1}{n+1-k}$
3. [CM 1.2.20] Give a combinatorial proof for the following identity by devising a set that both sides count.

$$
\sum_{k \geq 1} k\binom{m+1}{r+k+1}=\sum_{i=1}^{m} i 2^{i-1}\binom{m-i}{r}
$$

4. [CM 1.2.28] Evaluate the sums below. (Hint: Express each sum as a product.)
(a) $\sum_{S \subseteq[n]} \prod_{i \in S} \frac{1}{i}$
(b) $\sum_{S \subseteq[n]}(-1)^{|S|} \prod_{i \in S} \frac{1}{i}$
5. [CM 1.2.30] For the identity below,
(a) Give a combinatorial proof by constructing a set that both sides count.
(b) Use the Binomial Theorem to prove that both sides arise as the coefficient of x^{n} in the expansion of $\left(1+3 x+x^{2}\right)^{n}$. Hint: if you are having trouble generating the LHS with the Binomial Theorem, try to apply your combinatorial argument from (a) in the algebraic context. What plays the role of j in the combinatorial argument? What is the corresponding mechanism in the algebraic context?

$$
\sum_{j \geq 0}\binom{n}{j}\binom{2 j}{j}=\sum_{k \geq 0}\binom{n}{2 k}\binom{2 k}{k} 3^{n-2 k}
$$

6. [CM 1.2.39] Let $A=\left\{a_{1}, \ldots, a_{n}\right\} \subset \mathbb{R}$, with $a_{1}<\cdots<a_{r}$. For $i \in[n]$, let S_{i} be the family of i-element subsets of A, and let $\sigma_{i}=\sum_{B \in S_{i}} \max (B)$. For $k \in[n]$, prove that

$$
a_{k}=\sum_{r=1}^{n}(-1)^{k+r}\binom{r-1}{k-1} \sigma_{r} .
$$

