Directions: Solve 5 of the following 6 problems. See the course syllabus and the Homework Webpage on the course website for general directions and guidelines that apply to all homeworks.

1. $[\mathrm{CM} 1.1 .\{7,15\}]$ Recall that $[n]=\{1,2, \ldots, n\}$.
(a) Count the subsets of $[n]$ that contain at least one odd integer.
(b) Count the k-sets in $[n]$ having no two consecutive integers.
(c) Count the lists of subsets $A_{0}, A_{1}, \ldots, A_{n}$ of $[n]$ such that $A_{0} \subsetneq A_{1} \subsetneq \cdots \subsetneq A_{n}$. Count the lists such that $A_{0} \subseteq A_{1} \subseteq \cdots \subseteq A_{n}$.
(d) Use binomial coefficients to prove that $n^{3}+5 n$ is divisible by 6 for every integer n. Hint: express $n^{3}+5 n$ as the sum of binomial coefficients.
2. [CM 1.1.18] Count the lists of m ones and n zeros that have exactly k runs of ones, where a run is a maximal set of consecutive entries with the same value.
3. [CM 1.1.19] Recall that $[3]^{n}=\{1,2,3\}^{n}=\left\{\left(a_{1}, \ldots, a_{n}\right): 1 \leq a_{i} \leq 3\right.$ for each $\left.i\right\}$. Give a summation for the number of elements of $[3]^{n}$ with k odd entries that have no consecutive 1 and 3 .
4. [CM 1.1.28] For a permutation π of $[n]$, the displacement of π is $\sum_{i=1}^{n}|\pi(i)-i|$. Prove that the largest displacement of a permutation of $[n\rfloor$ is $\left\lfloor n^{2} / 2\right\rfloor$.
5. [CM 1.1.31] A permutation is graceful if the absolute differences between successive elements are distinct. Prove that if the set of elements in even-indexed positions of a graceful permutation of $[2 n]$ is $[n]$, then the first and last elements differ by n. Hint: Let π be a graceful permutation of $[2 n]$ such that $\pi(i) \leq n$ if and only if i is even. Evaluate $\sum_{i=1}^{n}|\pi(i)-\pi(i+1)|$ in two different ways, where all addition is modulo n (including $\pi(n+1)=\pi(1)$).
6. [CM 1.1.34] Flags on poles.
(a) Obtain a simple formula for the number of ways to put m distinct flags on a row of r flagpoles. Poles may be empty, and changing the order of flags on a pole changes the arrangement. The formula must only use one " m " and one " r ". (The answer is 6 for $m=r=2$, as shown below.)

(b) Prove that the identity below for rising factorials hods for all $x, y \in \mathbb{R}$.

$$
(x+y)^{(n)}=\sum_{k}\binom{n}{k} x^{(k)} y^{(n-k)}
$$

