Name: \qquad
Directions: Show all work. No credit for answers without work. The test has 5 pages, with 10 points per page. Your lowest scoring page will be dropped. Recommendation: to save on time, decide now which page you will drop and work on the other 4 pages.

1. [10 points] A population of animals has a birth rate β and death rate δ that are proportional to P. Recall that this means that $\beta=\lambda_{1} P$ and $\delta=\lambda_{2} P$ for some constants λ_{1} and λ_{2}. Also, recall that β represents births per unit population per unit time, and δ represents deaths per unit population per unit time.
(a) Show that $P(t)=\frac{P_{0}}{1-k P_{0} t}$ where $k=\lambda_{1}-\lambda_{2}$.
(b) When $\lambda_{1}>\lambda_{2}$, the population experiences "doomsday". When does doomsday occur? Find a general formula.
2. [10 points] Consider the differential equation $\frac{d P}{d t}=\frac{1}{2} P(11-P)$ with $P(0)=3$.
(a) Using the fact that $P(t)$ is a logistic differential equation, state the solution to $P(t)$. It is not necessary to show any work. Note: you may solve this equation directly and copy your answer here, but this will cost you time.
(b) Use Euler's method with step size $h=1 / 3$ to approximate $P(t)$ over the interval $[0,1]$.
(c) Other than the error, what is particularly unfortunate about the estimate for $P(2 / 3)$?
3. [5 points] Find the Wronskian of $f_{1}(x)=5 x, f_{2}(x)=\sin (x)$, and $f_{3}(x)=e^{x}$. Are these functions linearly dependent or linearly independent? Explain how you know.
4. [5 points] Find general solutions to the following differential equation: $y^{(3)}+8 y^{\prime \prime}+16 y^{\prime}=0$.
5. [10 points] Solve the following initial value problem: $y^{\prime \prime}-6 y^{\prime}+8 y=0$ with $y(0)=2$ and $y^{\prime}(0)=5$.
6. [10 points] A 5 kg -mass is attached to a spring with sprint constant $k=290 \mathrm{~N} / \mathrm{m}$. Initially, the spring is stretched 3 m from its equilibrium position and is traveling away from equilibrium at $19 \mathrm{~m} / \mathrm{s}$. The motion of the spring is damped with damping constant $c=30 \mathrm{Ns} / \mathrm{m}$.
(a) Express the position function of the mass in the form $x(t)=e^{-k t}(A \cos (\omega t)+B \sin (\omega t))$.
(b) Express the position function of the mass in the form $x(t)=e^{-k t}(C \cos (\omega t-\alpha))$.
(c) What is the frequency of the motion of the mass? Include units.
