Name: \qquad
Directions: Show all work. No credit for answers without work.

1. [3 points] Solve the following initial value problem: $\frac{d x}{d t}=7 x(x-13)$, and $x(0)=17$.
2. [2 points] Recall the logistic differential equation $\frac{d x}{d t}=k x(M-x)$. A population of cows satisfying the logistic equation initially has 4000 members and is growing at a rate of 3 cows per day. The environment can support a population of 10,000 cows.
(a) Solve for k in the logistic differential equation.
(b) Explicitly give the formula for $x(t)$.
3. [3 points] Find the equilibrium solutions to $\frac{d x}{d t}=x\left(x^{2}-4\right)$. Use a phase diagram to classify each equilibrium solution as stable, semi-stable, or unstable.
4. [2 points] Give the bifurcation diagram for the differential equation $\frac{d x}{d t}=x+k x^{3}$; this is the plot of all points (k, c) such that $x=c$ is an equilibrium solution to $\frac{d x}{d t}=x+k x^{3}$.
