Name: \qquad
Directions: Show all work. No credit for answers without work.

1. [2 points] Consider the general first-order differential equation $\frac{d y}{d x}=f(x, y)$ with initial value $y(a)=b$. State the theorem which gives conditions under which a solution exists and is unique.
2. [$\mathbf{2}$ parts, $\mathbf{1}$ point each] For each of the following initial value problems, determine whether the above theorem guarantees existence and uniqueness.
(a) $\frac{d y}{d x}=\frac{x^{3}(y-1)}{x+1}$, and $y(2)=1$.
(b) $\frac{d y}{d x}=\frac{x^{3} \sqrt{y-1}}{x+1}$, and $y(2)=1$.
3. [3 points] Solve the following initial value problem: $\frac{d y}{d x}=\frac{x^{2}}{e^{y}}$, and $y(3)=0$.
4. [3 points] Find the general solution to $\frac{d y}{d x}=y \sin (x)+\sin (x)$.
