Name: \qquad
Directions: Show all work. No credit for answers without work.

1. [4 parts, 3 points each] The temperature T in degrees Fahrenheit of a frozen pizza placed in a hot oven is given by $T=f(t)$, where t is the time in minutes since the pizza was put in the oven.
(a) What is the sign of $f^{\prime}(t)$? Briefly explain your answer.
(b) What are the units of $f^{\prime}(t)$?
(c) What is the sign of $f^{\prime \prime}(t)$? Briefly explain your answer.
(d) What are the units of $f^{\prime \prime}(t)$?
2. [8 points] Sketch a graph of a continuous function f with the following properties:

- When $x<1, f^{\prime}(x)<0 ; f^{\prime}(1)=0$; and when $x>1, f^{\prime}(x)>0$.
- When $x<3, f^{\prime \prime}(x)>0 ; f^{\prime \prime}(3)=0$; and when $x>3, f^{\prime \prime}(x)<0$.

3. [10 parts, 2 points each] Differentiate the following functions.
(a) $f(x)=4$
(f) $f(x)=3 \sqrt{x}$
(b) $f(x)=3 x^{2}-4 x+1$
(g) $f(x)=\ln \left(\sqrt{3}+e^{2}\right)$
(c) $f(x)=\frac{3}{x^{4}}$
(h) $f(x)=e^{\sqrt{2} \cdot x}$
(d) $f(x)=e^{-x}$
(i) $f(x)=x^{\ln (4)}$
(e) $f(x)=7^{x}$
(j) $f(x)=2 \ln (x)$
4. [4 parts, 5 points each] Differentiate the following functions.
(a) $f(x)=\left(x^{5}+2 x^{3}+2\right)\left(x^{4}+1\right)$
(b) $f(x)=\left(e^{x}+\ln (x)\right)^{8}$
(c) $f(x)=\frac{x^{4}+x}{x^{2}+1}$
(d) $f(x)=\sqrt{e^{\left(x^{2}\right)}+1}$
5. Let $g(x)=\ln \left(x^{3}+1\right)$.
(a) [5 points] Find $g^{\prime}(x)$.
(b) [$\mathbf{5}$ points] Find the equation of the tangent line to $g(x)$ at $x=2$.
6. [10 points] The graph of $f(x)$ appears below. Sketch $f^{\prime}(x)$ in the space provided.

7. Let $f(x)=(2 x+1)^{3}(3 x+1)$.
(a) $[\mathbf{6}$ points $]$ Find $f^{\prime}(x)$.
(b) [7 points] Find the critical points of f.
(c) [7 points] Use the First Derivative Test to classify each critical point as a local minimum, a local maximum, or neither.
