Name: \qquad

1. [4 parts, $\mathbf{1 / 2}$ point each] Determine the truth value of each of the following wffs in the interpretation where the domain is $\{0,1,2,3, \ldots\}$ and $P(x)$ is " x is even". (Remember that 0 is even.) Write the entire word "true" or the entire word "false".
(a) $\forall x[\exists y[P(y) \wedge y>x]]$
(c) $\exists x[\forall y[P(x) \rightarrow P(y)]]$
(b) $\exists x[\forall y[P(y) \rightarrow y>x]]$
(d) $\forall x[\exists y[P(x) \rightarrow P(y)]]$
2. [3 parts, $\mathbf{1}$ point each] Using the predicates shown, translate the following into wffs.

$J(x): " x$ is a judge"	$C(x): " x$ is a chemist"	$L(x): " x$ is a lawyer"
$W(x): " x$ is a woman"	$A(x, y): " x$ admires $y "$	

(a) No woman is both a lawyer and a chemist.
(b) Every judge admires a female lawyer.
(c) Some women admire only those who are lawyers or judges.
3. [2 points] Write the negation of the sentence "Some lawyers admire only judges". Your sentence should be as simple as possible.

Derivation Rule	Name/Abbreviation for Rule
$\begin{array}{lll} P \vee Q & \Longleftrightarrow & Q \vee P \\ P \wedge Q & \Longleftrightarrow & Q \wedge P \end{array}$	Commutative comm
$\begin{aligned} & (P \vee Q) \vee R \end{aligned} \quad \Longleftrightarrow \quad P \vee(Q \vee R), ~(P \wedge Q \wedge R \quad \Longleftrightarrow \quad P \wedge(Q \wedge R)$	Associative - ass
$\begin{array}{lll} (P \vee Q)^{\prime} & \Longleftrightarrow P^{\prime} \wedge Q^{\prime} \\ (P \wedge Q)^{\prime} & \Longleftrightarrow & P^{\prime} \vee Q^{\prime} \\ \hline \end{array}$	De Morgan's laws-De Morgan
$P \rightarrow Q \quad \Longleftrightarrow \quad P^{\prime} \vee Q$	Implication-imp
$P \quad \Longleftrightarrow\left(P^{\prime}\right)^{\prime}$	Double negation - dn
$P \leftrightarrow Q \quad \Longleftrightarrow \quad(P \rightarrow Q) \wedge(Q \rightarrow P)$	Defn of Equivalence equ
$\left.\begin{array}{c} P \\ P \rightarrow Q \end{array}\right\} \Rightarrow Q$	Modus ponens - mp
$\left.\begin{array}{c} P \rightarrow Q \\ Q^{\prime} \end{array}\right\} \quad \Longrightarrow \quad P^{\prime}$	Modus tollens - mt
$\left.\begin{array}{l} P \\ Q \end{array}\right\} \quad \Longrightarrow \quad P \wedge Q$	Conjunction-con
$P \wedge Q \Longrightarrow\left\{\begin{array}{l}P \\ Q\end{array}\right.$	Simplification-sim
$P \quad \Longrightarrow \quad P \vee Q$	Addition-add

4. [3 points] Using the given derivation rules and the 4 derivation rules involving quantifiers, give a proof sequence to show the following wff is valid.

$$
\exists x[\forall y[Q(x, y)]] \rightarrow \forall y[\exists x[Q(x, y)]]
$$

