Name: \qquad

Unless told otherwise, show your work. Answers without work earn reduced credit.

1. [3 points] Decide whether the given functions are one-to-one/injective, onto/surjective, or bijective. For each blank cell in the table, write "Yes" if the function has the property, and "No" otherwise. You do not need to show your work.
In the following, let A^{*} be the set of finite strings of a 's and b 's. For example, aaba, $b b$, and the empty string λ are all in A^{*}. Recall that $\mathbb{N}=\{0,1,2, \ldots\}$ and \mathbb{Z} is the set of integers.

Function	one-to-one	onto	bijective
$f: \mathbb{Z} \rightarrow \mathbb{Z}$ where $f(x)=x-1$			
$f: \mathbb{Z} \rightarrow \mathbb{Z}$ where $f(x)=x^{2}-1$			
$f: \mathbb{Z} \rightarrow \mathbb{Z}$ where $f(x)=x^{3}-1$			
$f: A^{*} \rightarrow \mathbb{N}$ where $f(x)$ equals the length of x			
$f: A^{*} \rightarrow A^{*}$ where $f(x)=x x$			
$f: A^{*} \rightarrow A^{*}$ where $f(x)$ equals the reverse of x			

2. [2 parts, $\mathbf{1}$ point each] Let A be the set of all strings of a 's and b 's of length 8 . Let $f: A \rightarrow A$ be the function that shifts every character to the right, and moves the 8th character to the front of the string. For example, $f(a b a a a b b b)=b a b a a a b b$. Let $g: A \rightarrow A$ be the function that reverses the string. For example, $g(b a b a a a b b)=b b a a a b a b$.
(a) Find $(f \circ g)(a b b a b a b b)$.
(b) Let $h=f \circ g$. Is h a bijection? If h is a bijection, describe the inverse h^{-1}. If h is not a bijection, explain why.
3. [3 parts, 1 point each] Let $A=\{1,2,3,4,5,6,7,8\}$. Express the following permutations as the composition of zero or more disjoint cycles; each cycle should have at least 2 elements.
(a) $f=\left(\begin{array}{llllllll}1 & 2 & 3 & 4 & 5 & 6 & 7 & 8 \\ 5 & 2 & 6 & 1 & 4 & 3 & 8 & 7\end{array}\right)$
(b) $(3684) \circ(6245)$
(c) $(268) \circ(27) \circ\left(\begin{array}{ll}3 & 6\end{array}\right) \circ(42)$
4. [2 points] Prove, by finding constants that satisfy the definition of order of magnitude, that $f=\Theta(g)$ if $f(n)=3 \log \left(n^{5}\right)$ and $g(n)=\log (n)$.
