Name: \qquad
Show your work. Answers without work earn reduced credit. This test has 100 points.

1. [4 parts, $\mathbf{5}$ points each] Solve the following equations for t exactly. Decimal approximations are worth partial credit.
(a) $6^{-2 t}=8$.
(c) $e^{5 t}=2^{t+1}$.
(b) $9\left(\frac{3}{7}\right)^{t}=8$.
(d) $4 \ln (8-3 t)=12$.
2. [2 parts, 6 points each] Tables for $f(x)$ and $g(x)$ appear below. Each function is either linear or exponential. Give a formula for each function.

(a) | x | 4 | 5 | 6 | 7 |
| :---: | :---: | :---: | :---: | :---: |
| $f(x)$ | 5 | 2 | -1 | -4 |

(b) | x | -1 | 0 | 1 | 2 |
| :---: | :---: | :---: | :---: | :---: |
| $g(x)$ | 16 | 24 | 36 | 54 |

3. A movie theater incurs $\$ 8000$ in fixed expenses each day. Each customer costs the theater an additional $\$ 2.00$. The theater sells movie tickets for $\$ 10$.
(a) [3 points] Give a formula $C(q)$ for the cost (in dollars) of running the theater for a day when the theater sells q movie tickets.
(b) [3 points] Give a formula $R(q)$ for the revenue (in dollars) received on a day when q tickets are sold.
(c) [6 points] How many tickets must be sold in a day for the theater to break even?
4. In 2000, Town A had a population of 3 million. The population of Town A grows at a discrete rate of 4% each year. Town B had a population of 8.2 million in 2000 and declines at a discrete rate of 2.5% each year.
(a) [3 points] Find a formula for the population P (in millions) of Town A.
(b) [3 points] Find a formula for the population P (in millions) of Town B.
(c) [8 points] What is the half-life of the population of Town B?
(d) [8 points] When will the towns have the same population?
5. [12 points] The graph of a function $f(x)$ appears below. Sketch the derivative $f^{\prime}(x)$. Your sketch of $f^{\prime}(x)$ should capture the important features of $f^{\prime}(x)$.

6. Let $f(x)=4 x^{2}$.
(a) $[6$ points $]$ Find the average rate of change of f over the interval $[1,3]$.
(b) $[14$ points $]$ Find the average rate of change of f over the interval $[x, x+h]$.
(c) [2 points] Using part (b), find $f^{\prime}(x)$.
