Name: \qquad
Directions: Show all work. No credit for answers without work.

1. [15 points] Use cofactor expansion to compute the determinant of the following matrix as efficiently as possible.

$$
\left[\begin{array}{lllll}
0 & 0 & 3 & 0 & 1 \\
0 & 2 & 5 & 0 & 0 \\
0 & 1 & 0 & 2 & 0 \\
7 & 0 & 0 & 2 & 0 \\
0 & 0 & 0 & 0 & 1
\end{array}\right]
$$

2. [2 parts, 5 points each] Let A be an invertible $n \times n$-matrix.
(a) What can you say about the rank of A ?
(b) Suppose that C is an $n \times n$ matrix obtained from A by changing one row of A. What can you say about the rank of C ? Why?
3. [25 points] Using standard techniques from class, diagonalize the following matrix A. That is, if possible, find an invertible matrix P and a diagonal matrix D such that $A=P D P^{-1}$. The matrix P^{-1} need not be computed explicitly. If diagonalization is not possible, then explain why.

$$
\left[\begin{array}{rrr}
2 & 3 & -3 \\
-3 & -4 & 3 \\
-3 & -3 & 2
\end{array}\right]
$$

4. A casino operates a slot machine, where each play costs 1 dollar. The machine either returns no cash (a loss), returns 1 dollar (a tie), or returns 5 dollars (a win). The chances of an outcome depend on the previous outcome. If the previous outcome was a loss, then the next outcome has a 50% chance of being another loss, a 30% chance of being a tie, and a 20% chance of being a win. If the previous outcome was a tie, then the next outcome has a 90% chance of being a loss and a 10% chance of being another tie. If the previous outcome is a win, then the next outcome has a 100% chance of being a loss.
(a) [5 points] Draw a state diagram that models the slot machine.
(b) [5 points] Give the stochastic matrix P for the corresponding Markov chain.
(c) [10 points] Find the steady state vector for P.
(d) [5 points] On average, how much money does the player lose on each play?
5. [6 parts, 2 points each] True/False. Justify your answer.
(a) If A has a strictly dominant eigenvalue λ, then for most vectors \mathbf{x}_{0}, the sequence $\mathbf{x}_{0}, \mathbf{x}_{1}, \ldots$ defined by $\mathbf{x}_{k}=A^{k} \mathbf{x}_{0}$ approaches an eigenvector for λ.
(b) If A and B are $n \times n$ matrices, then $\operatorname{det}(A+B)=\operatorname{det}(A)+\operatorname{det}(B)$.
(c) If A and B are similar matrices, then A and B have the same eigenvalues with the same multiplicities.
(d) Let A be a matrix with 7 rows and 10 columns. If the null space of A has dimension 4 , then the column space of A has dimension 3 .
(e) If A is a square matrix and r is a scalar, then A is similar to $r A$.
(f) If A is diagonalizable, then so is $A^{2}+A$.
6. [5 points] Find the distance between the complex-valued vectors $\left[\begin{array}{r}3+i \\ 2\end{array}\right]$ and $\left[\begin{array}{r}-1+2 i \\ i\end{array}\right]$.
7. [8 points] Find a unit vector in the direction of $\left[\begin{array}{c}1 \\ \frac{1}{2} \\ \frac{1}{3}\end{array}\right]$.
