Name: \qquad
Directions: Show all work. No credit for answers without work.

1. Three cities, A, B, and C share a population. Each year, a certain percentage of people living in a city stay or move to another city according to the diagram below. For example, in a year, 90% of the population of city B stays in city $B, 5 \%$ moves to city A, and 5% moves to city C.

(a) [10 points] Given the initial population vector $\mathbf{x}_{\mathbf{0}}=\left[\begin{array}{c}a_{0} \\ b_{0} \\ c_{0}\end{array}\right]$, find a matrix A such that the populations after one year are given by $\mathbf{x}_{\mathbf{1}}=A \mathbf{x}_{\mathbf{0}}$.
(b) [15 points] Given that 15 million people in total live in cities A, B, and C, ind equilibrium populations (if they exist).
2. Let $T: \mathbb{R}^{2} \rightarrow \mathbb{R}^{3}$ be a linear transform that maps $\left[\begin{array}{l}1 \\ 4\end{array}\right]$ to $\left[\begin{array}{r}5 \\ -2 \\ 0\end{array}\right]$ and $\left[\begin{array}{r}-3 \\ 2\end{array}\right]$ to $\left[\begin{array}{l}2 \\ 2 \\ 3\end{array}\right]$.
(a) $[\mathbf{1 0}$ points $]$ Determine the image of $\left[\begin{array}{c}-1 \\ 10\end{array}\right]$ under T.
(b) [5 points] How many rows and columns does the standard matrix for T have?
3. [10 points] Let $A=\left[\begin{array}{ll}1 & 2 \\ 3 & 4\end{array}\right]$. Express A as the product of elementary matrices.
4. [10 points] Suppose that $\left\{\mathbf{v}_{1}, \mathbf{v}_{2}, \ldots, \mathbf{v}_{p}\right\}$ is a linearly dependent set, but removing any single vector in the set gives a linearly independent set of size $p-1$. Let c_{1}, \ldots, c_{p} be scalars such that $c_{1} \mathbf{v}_{1}+c_{2} \mathbf{v}_{2}+\cdots+c_{p} \mathbf{v}_{p}=\mathbf{0}$. What can you say about c_{1}, \ldots, c_{p} ? Explain.
5. [15 points] Find the inverse of the following matrix.

$$
\left[\begin{array}{rrr}
1 & 2 & -1 \\
-6 & -14 & -7 \\
2 & 5 & 4
\end{array}\right]
$$

6. [5 points] Give geometric descriptions of all subspaces of \mathbb{R}^{2}.
7. [2 parts, 10 points each] Let A and B be the given matrices below. We are given that A and B are row-equivalent.

$$
A=\left[\begin{array}{rrrrr}
16 & -3 & -47 & 60 & 10 \\
1 & 0 & -2 & 3 & 0 \\
5 & 4 & 10 & -1 & 3 \\
-5 & 1 & 15 & -19 & -3
\end{array}\right] \quad B=\left[\begin{array}{rrrrr}
1 & 0 & -2 & 3 & 0 \\
0 & 1 & 5 & -4 & 0 \\
0 & 0 & 0 & 0 & 1 \\
0 & 0 & 0 & 0 & 0
\end{array}\right]
$$

(a) Find a basis for $\operatorname{Col}(A)$.
(b) Find a basis for $\operatorname{Nul}(A)$.

