Name: _

Directions: Show all work. No credit for answers without work.

1. Three cities, A, B, and C share a population. Each year, a certain percentage of people living in a city stay or move to another city according to the diagram below. For example, in a year, 90% of the population of city B stays in city B, 5% moves to city A, and 5% moves to city C.

(a) **[10 points]** Given the initial population vector $\mathbf{x_0} = \begin{bmatrix} a_0 \\ b_0 \\ c_0 \end{bmatrix}$, find a matrix A such that the populations after one year are given by $\mathbf{x_1} = A\mathbf{x_0}$.

(b) **[15 points]** Given that 15 million people in total live in cities A, B, and C, ind equilibrium populations (if they exist).

2. Let $T: \mathbb{R}^2 \to \mathbb{R}^3$ be a linear transform that maps $\begin{bmatrix} 1\\4 \end{bmatrix}$ to $\begin{bmatrix} 5\\-2\\0 \end{bmatrix}$ and $\begin{bmatrix} -3\\2 \end{bmatrix}$ to $\begin{bmatrix} 2\\2\\3 \end{bmatrix}$. (a) [10 points] Determine the image of $\begin{bmatrix} -1\\10 \end{bmatrix}$ under T.

- (b) [5 points] How many rows and columns does the standard matrix for T have?
- 3. **[10 points]** Let $A = \begin{bmatrix} 1 & 2 \\ 3 & 4 \end{bmatrix}$. Express A as the product of elementary matrices.

4. [10 points] Suppose that $\{\mathbf{v}_1, \mathbf{v}_2, \dots, \mathbf{v}_p\}$ is a linearly dependent set, but removing any single vector in the set gives a linearly independent set of size p - 1. Let c_1, \dots, c_p be scalars such that $c_1\mathbf{v}_1 + c_2\mathbf{v}_2 + \dots + c_p\mathbf{v}_p = \mathbf{0}$. What can you say about c_1, \dots, c_p ? Explain.

5. [15 points] Find the inverse of the following matrix.

$$\left[\begin{array}{rrrr} 1 & 2 & -1 \\ -6 & -14 & -7 \\ 2 & 5 & 4 \end{array}\right]$$

6. [5 points] Give geometric descriptions of all subspaces of \mathbb{R}^2 .

7. [2 parts, 10 points each] Let A and B be the given matrices below. We are given that A and B are row-equivalent.

A =	16	-3	-47	60	10		[1]	0	-2	3	0]
	1	0	-2	3	0	B =	0	1	5	-4	0
	5	4	10	-1	3		0	0	0	0	1
	-5	1	15	-19	-3		0	0	0	0	0

(a) Find a basis for $\operatorname{Col}(A)$.

(b) Find a basis for Nul(A).