Name: Solutions
Directions: Show all work. No credit for answers without work.

1. [15 points] Solve the following system of equations.

$$
\begin{aligned}
& 3 x_{1}-x_{2}+2 x_{3}=12 \\
& x_{1}+x_{2}-x_{3}=-2 \\
& 4 x_{1}-5 x_{2}+2 x_{3}=1
\end{aligned}
$$

$$
\left[\begin{array}{cccc}
3 & -1 & 2 & 12 \\
1 & 1 & -1 & -2 \\
4 & -5 & 2 & 1
\end{array}\right] \xrightarrow{R 1 \leftrightarrow R 2}\left[\begin{array}{cccc}
1 & 1 & -1 & -2 \\
3 & -1 & 2 & 12 \\
4 & -5 & 2 & 1
\end{array}\right] \xrightarrow{R 2 \pm(3) R 1} \xrightarrow{R 3 \pm(-4) R 1}\left[\begin{array}{cccc}
1 & 1 & -1 & -2 \\
0 & -4 & 5 & 18 \\
0 & -9 & 6 & 9
\end{array}\right] \xrightarrow{R 2 \cdot(-1)} \xrightarrow{R 3(-1)} \mathbf{(1)}\left[\begin{array}{cccc}
1 & 1 & -1 & -2 \\
0 & 4 & -5 & -18 \\
0 & -3 & 2 & 3
\end{array}\right]
$$

$$
\stackrel{R 2 \pm R 3}{\sim}\left[\begin{array}{cccc}
1 & 1 & -1 & -2 \\
0 & 1 & -3 & -15 \\
0 & -3 & 2 & 3
\end{array}\right] \stackrel{R 3 \pm 3 R 2}{\sim}\left[\begin{array}{cccc}
1 & 1 & -1 & -2 \\
0 & 1 & -3 & -15 \\
0 & 0 & -7 & -42
\end{array}\right] \xrightarrow{R 3 \cdot\left(-\frac{1}{7}\right)} \xrightarrow{\sim}\left[\begin{array}{cccc}
1 & 1 & -1 & -2 \\
0 & 1 & -3 & -15 \\
0 & 0 & 1 & 6
\end{array}\right] \xrightarrow{R 2 \pm 2 \pm 3(R 3)}\left[\begin{array}{cccc}
1 & 1 & 0 & 4 \\
0 & 1 & 0 & 3 \\
0 & 0 & 1 & 6
\end{array}\right]
$$

$$
\xrightarrow{R_{1} \pm(-1) R^{2}}\left[\begin{array}{llll}
1 & 0 & 0 & 1 \\
0 & \$ & 0 & 3 \\
0 & 0 & 1 & 6
\end{array}\right] \quad\left[\begin{array}{l}
x_{1}=1 \\
x_{2}=3 \\
x_{3}=6
\end{array}\right.
$$

2. [5 parts, 2 points each] True/False. If the statement is true, then explain why. If the statement is false, then edit the statement slightly to make it true.
(a) In a matrix with 10 rows, replacing row 8 with $2(R 7)-R 8$ (ie. 2 times row 7 minus row 8) is an elementary row operation.
(b) Let A be a matrix and let A^{\prime} be a matrix obtained from A by swapping two columns. The system $A \mathbf{x}=\mathbf{b}$ is consistent if and only if $A^{\prime} \mathbf{x}=\mathbf{b}$ is consistent.
(c) Every inconsistent system is nonhomogeneous.
(d) The solution set for $A \mathbf{x}=\mathbf{b}$ is a translation of the solution set for $A \mathbf{x}=\mathbf{0}$.
(e) Every matrix is row equivalent to a unique matrix in reduced echelon form.
(a) FADSE. $R 8 \leftarrow R 8+2(R 7)$ is an elementary raw operation.
(b) True. Suppose we obtain A^{\prime} by swapping the it and fit columns. If \vec{x} is a sole to $A \vec{x}=\vec{b}$, then the vector \vec{x}^{\prime} obtained) fran \vec{x} by swapping the it an $j^{\text {th }}$ entry of \vec{x} is a soln to $A^{\prime} \vec{x}^{\prime}=\vec{b}$, and vice versa.
(c) True. A hanogenens system $A \vec{x}=\overrightarrow{0}$ always has the solution $\vec{x}=\overrightarrow{0}$ (trivial sole) ar therefore every homogeneous system is consistent. So the only inconsistent systems are no hame y yam es.
(d) Fable. The solution set for a consistent system $A \vec{x}=\vec{b}$ is a translation of the solution set for $A \vec{x}=\overrightarrow{0}$. (e) True. This is an important fact from Section 1.2.
3. [10 points] Determine the values) of h, if any, make the linear system represented by the following augmented matrix consistent.

$$
\left[\begin{array}{rrrr}
6 & -1 & 1 & 7 \\
2 & h & -2 & -10 \\
1 & 2 & 3 & 7 \\
3 & 0 & 1 & 5
\end{array}\right]
$$

Re order Ross:

$-24+12-3 h$
For system to be consistent, we need $16+4 h=0$, or $h=-4$.
4. [15 points] Give an equation for the components of \mathbf{b} that determines when the system $A \mathbf{x}=\mathbf{b}$ is consistent.

$$
A=\left[\begin{array}{rrr}
1 & 2 & -1 \\
8 & -4 & 12 \\
1 & -2 & 3
\end{array}\right]
$$

$$
\mathbf{b}=\left[\begin{array}{l}
b_{1} \\
b_{2} \\
b_{3}
\end{array}\right]
$$

$$
\left.\left[\begin{array}{cccc}
1 & 2 & -1 & b_{1} \\
8 & -4 & 12 & b_{2} \\
1 & -2 & 3 & b_{3}
\end{array}\right] \stackrel{R 2 \pm-8 R 1}{R 3 \pm-R 1} \begin{array}{cccc}
1 & 2 & -1 & b_{1} \\
0 & -20 & 20 & b_{2} \\
\hline-8 b_{1} \\
0 & -4 & 4 & b_{3}-b_{1}
\end{array}\right] \xrightarrow[R 3 \cdot(-5)]{\sim}\left[\begin{array}{cccc}
1 & 2 & -1 & b_{1} \\
0 & -20 & 20 & b_{2} \\
-8 b_{1} \\
0 & 20 & -20 & -5 b_{3}+5 b_{1}
\end{array}\right]
$$

$\xrightarrow[\sim]{R 3 \pm R 2}\left[\begin{array}{cccc}1 & 2 & -1 & b_{1} \\ 0 & -20 & 20 & b_{2}-8 b_{1} \\ 0 & 0 & 0 & -5 b_{3}+5 b_{1}+b_{2}-8 b_{1}\end{array}\right] \quad$ We ned $\quad 5 b_{3}+5 b_{1}+b_{2}-8 b_{1}=0 \quad \begin{aligned} & -3 b_{1}+b_{2}-5 b_{3}=0 \quad \text { or } \quad 3 b_{1}-b_{2}+5 b_{3}=0\end{aligned}$
5. [10 points] Suppose that $\mathbf{v}_{\mathbf{1}}, \ldots, \mathbf{v}_{\mathbf{n}}$ are vectors in \mathbb{R}^{m} that span \mathbb{R}^{m}. Give a careful argument that $n \geq m$.
Shia span $\left(\left\{v_{v},-, v_{n} v_{3}\right)=\mathbb{R}^{n}\right.$, we hose tod torch $\vec{b} \subset \mathbb{R}^{m}$,
there is a solution to $x_{1} \vec{v}_{1}+\cdots+x_{n} \vec{v}_{n}=\vec{b}$. Let $A=\left[\vec{v}_{1} \cdots \vec{v}_{n}\right]$,
so that A is the coefficient matrix for this system. For a particular $\vec{b} \in R^{m}$, the system $A \vec{x}=\vec{b}$ has a soln ff the argmates matrix $\left[\begin{array}{lll}\vec{v}_{1} & \cdots & \vec{v} \\ \vec{b}\end{array}\right]$ has no pious in the last column. For $A \vec{x}=\vec{b}$ to be consistent for each $\vec{b} \in \mathbb{R}^{m}$, we must have a pivot entry in each row of A. Since each column of A has at most one pivot entry, we have \#rows of $A \leq$ \# cols of A. Since A has m rows and n columns, it follows that $m \leq n$.
6. [$\mathbf{1 0}$ points] Besides $\mathbf{0}$, is there a linear combination of $\mathbf{a}_{1}, \mathbf{a}_{2}$, and \mathbf{a}_{3} that has no negative entries? Justify your answer.

$$
\mathbf{a}_{1}=\left[\begin{array}{r}
1 \\
3 \\
-4
\end{array}\right] \quad \mathbf{a}_{2}=\left[\begin{array}{r}
2 \\
-3 \\
1
\end{array}\right] \quad \mathbf{a}_{3}=\left[\begin{array}{r}
-2 \\
1 \\
1
\end{array}\right]
$$

We determine the vectors $\left[\begin{array}{l}b_{1} \\ b_{2} \\ b_{3}\end{array}\right]$ that are liver combinations of \vec{a}_{1}, \vec{a}_{2}, ad \vec{a}_{3}.

$$
\left[\begin{array}{cccc}
1 & 2 & -2 & b_{1} \\
3 & -3 & 1 & b_{2} \\
-4 & 1 & 1 & b_{3}
\end{array}\right] \stackrel{R 2 \pm(-3) R 1}{R 3 \pm(4) R 1}\left[\right] \xrightarrow{\sim 3 \pm R_{2}}\left[\begin{array}{cccc}
(1) 2 & -2 & b_{1} \\
0 & -9 & 7 & b_{2}-3 b_{1} \\
0 & 0 & b_{3}+4 b_{1}+b_{2} b_{3}
\end{array}\right]
$$

The vector $\left[\begin{array}{l}b_{1} \\ b_{2} \\ b_{3}\end{array}\right]$ is a lin. camb, iff the system whose augmented matrix appears above is consistent

$$
\text { iff } b_{3}+4 b_{1}+b_{2}-3 b_{1}=0 \text { if } b_{1}+b_{2}+b_{3}=0 \text {. }
$$

The invar linear combinations of $\vec{a}_{1}, \vec{a}_{2}, \vec{a}_{3}$ are the vectors $\left[\begin{array}{l}b_{1} \\ b_{2} \\ b_{3}\end{array}\right]$ such that $b_{1}+b_{2}+b_{3}=0$. So if there are no negative entries, then all entries are zero. So wo, there is no other linear combination with no negative entries.
7. [15 points] Express the solution set to $A \mathrm{x}=\mathbf{0}$ in parametric form.

$$
\left.\begin{array}{l}
A=\left[\begin{array}{rrrrrrr}
x_{1} & x_{2} & x_{3} & x_{4} & x_{5} & x_{6} & x_{7} \\
1 & 2 & 0 & 0 & -3 & -2 & 0 \\
0 & 0 & 1 & 0 & 4 & 3 & 0 \\
0 & 0 & 0 & 1 \\
1 & 1 & -1 & 0 \\
0 & 0 & 0 & 0 & 0 & 0 & 1
\end{array}\right] \\
x_{7}=0 \\
x_{5} x_{6} \text { free } \\
x_{4}=-x_{5}+x_{6} \\
x_{3}=-4 x_{5}-3 x_{6} \\
x_{2} \text { free } \\
x_{1}=-2 x_{2}+3 x_{5}+2 x_{6}
\end{array}\right] \quad \vec{x}=x_{2}\left[\begin{array}{c}
-2 \\
1 \\
0 \\
0 \\
0 \\
0 \\
0
\end{array}\right]+x_{5}\left[\begin{array}{c}
3 \\
0 \\
-4 \\
-1 \\
1 \\
0 \\
0
\end{array}\right]+x_{6}\left[\begin{array}{c}
2 \\
0 \\
-3 \\
1 \\
0 \\
1 \\
0
\end{array}\right], \begin{gathered}
x_{2}, x_{5}, x_{6} \\
\text { free in } \mathbb{R}
\end{gathered}
$$

8. [$\mathbf{1 5}$ points] Express the solution set to $A \mathbf{x}=\mathbf{b}$ in parametric form.

$$
A=\left[\begin{array}{rrrrr}
5 & 20 & -5 & -2 & 1 \\
2 & 8 & -2 & 1 & -1 \\
-3 & -12 & 3 & 0 & -1
\end{array}\right] \quad \mathbf{b}=\left[\begin{array}{r}
12 \\
8 \\
-8
\end{array}\right]
$$

Augmented matrix:
$\left[\begin{array}{cccccc}5 & 20 & -5 & -2 & 1 & 12 \\ 2 & 8 & -2 & 1 & -1 & 8 \\ -3 & -12 & 3 & 0 & -1 & -8\end{array}\right] \stackrel{R 1 \pm(-2) R 2}{\longrightarrow}\left[\begin{array}{cccccc}1 & 4 & -1 & -4 & 3 & -4 \\ 2 & 8 & -2 & 1 & -1 & 8 \\ -3 & -12 & 3 & 0 & -1 & -8\end{array}\right] \stackrel{R 2 \pm(-2) R 1}{ } \xrightarrow{R 3 \pm(3) R 1}\left[\begin{array}{cccccc}1 & 4 & -1 & -4 & 3 & -4 \\ 0 & 0 & 0 & 9 & -7 & 16 \\ 0 & 0 & 0 & -12 & 8 & -20\end{array}\right]$
$\xrightarrow{R 3 \cdot\left(-\frac{1}{4}\right)}\left[\begin{array}{cccccc}1 & 4 & -1 & -4 & 3 & -4 \\ 0 & 0 & 0 & 9 & -7 & 16 \\ 0 & 0 & 0 & 3 & -2 & 5\end{array}\right] \xrightarrow{R 3 \pm(-3) R_{2}}\left[\begin{array}{cccccc}1 & 4 & -1 & -4 & 3 & -4 \\ 0 & 0 & 0 & 0 & -1 & 1 \\ 0 & 0 & 0 & 3 & -2 & 5\end{array}\right] \xrightarrow{R 2 \cdot(-1)} \begin{aligned} & R 2 \leftrightarrow R_{3}\end{aligned}\left[\begin{array}{cccccc}1 & 4 & -1 & -4 & 3 & -4 \\ 0 & 0 & 0 & 3 & -2 & 5 \\ 0 & 0 & 0 & 0 & 1 & -1\end{array}\right]$
$\xrightarrow{R 1 \pm(-3) R 3} \xrightarrow{R 2 \pm(2) K 3}\left[\begin{array}{cccccc}1 & 4 & -1 & -4 & 0 & -1 \\ 0 & 0 & 0 & 3 & 0 & 3 \\ 0 & 0 & 0 & 0 & 1 & -1\end{array}\right] \stackrel{R 2 \cdot \frac{1}{3}}{\sim}\left[\begin{array}{cccccc}1 & 4 & -1 & -4 & 0 & -1 \\ 0 & 0 & 0 & 1 & 0 & 1 \\ 0 & 0 & 0 & 0 & 1 & -1\end{array}\right] \xrightarrow{R 1 \pm 4(2)}\left[\begin{array}{ccccc}x_{1} & x_{2} & x_{3} & x_{4} & x_{5} \\ (1) & 4 & -1 & 0 & 0 \\ 0 & 0 & 0 & 11 & 0 \\ 0 & 0 & 0 & 0 & 1 \\ 0 & -1\end{array}\right]$
$\left.\begin{array}{l}x_{5}=-1 \\ x_{4}=1 \\ x_{2}, x_{3} \text { free } \\ x_{1}=3-4 x_{2}+x_{3}\end{array}\right] \Rightarrow \vec{x}=\left[\begin{array}{c}3 \\ 0 \\ 0 \\ 1 \\ -1\end{array}\right]+x_{2}\left[\begin{array}{c}-4 \\ 1 \\ 0 \\ 0 \\ 0\end{array}\right]+x_{3}\left[\begin{array}{l}1 \\ 0 \\ 1 \\ 0 \\ 0\end{array}\right], x_{2}, x_{3} \in \mathbb{R}$.

