Name: Solutains
Directions: Show all work. No credit for answers without work.

1. [2 points] Let $\mathcal{B}=\left\{\mathbf{b}_{1}, \mathbf{b}_{2}\right\}$, where $\mathbf{b}_{1}=\left[\begin{array}{r}1 \\ -2 \\ 5\end{array}\right]$ and $\mathbf{b}_{2}=\left[\begin{array}{r}5 \\ -2 \\ 1\end{array}\right]$. Given $\mathbf{x}=\left[\begin{array}{r}-17 \\ 2 \\ 11\end{array}\right]$, find $[\mathbf{x}]_{\mathcal{B}}$ if possible.

$$
\left[\begin{array}{cc|c}
1 & 5 & -17 \\
-2 & -2 & 2 \\
5 & 1 & 11
\end{array}\right] \leadsto\left[\begin{array}{ccc}
1 & 5 & -17 \\
0 & 8 & -32 \\
0 & -24 & 96
\end{array}\right] \leadsto\left[\begin{array}{ccc}
1 & 5 & -17 \\
0 & 8 & -32 \\
0 & 0 & 0
\end{array}\right] \leadsto\left[\begin{array}{ccc}
1 & 5 & -17 \\
0 & 1 & -4 \\
0 & 0 & 0
\end{array}\right]
$$

$$
\leadsto\left[\begin{array}{ccc}
1 & 0 & 3 \\
0 & 1 & -4 \\
0 & 0 & 0
\end{array}\right]
$$

So $3 \vec{b}_{1}+(-4) \vec{b}_{2}=\vec{x}$ an therefore

$$
[\vec{x}]_{B}=\left[\begin{array}{c}
3 \\
-4
\end{array}\right]
$$

2. [1 point] What is the rank of a 4×5 matrix whose null space has dimension 3 ?

$$
\left.\begin{array}{r}
1 \\
4 \\
1
\end{array}\right] \begin{gathered}
-5 \\
\left.\operatorname{rank}(A)+\operatorname{din}\left(n_{0}\right)(A)\right)=\# c o l s \\
\operatorname{rank}(A)+3=5 \\
\operatorname{rank}(A)=2
\end{gathered}
$$

3. [1 point] Let A be an $n \times n$ matrix with two equal rows. What, if anything, can we conclude about $\operatorname{det}(A)$? Explain.
If A has 2 equal rows, then a row replacement operation can produce a row of all zeros. So the reduced row echelar for of A has a raw of all zeros, meaining A is not row-equivalent to I_{n} al so A is not invertible. Since A is not invertible, we have $\operatorname{det}(A)=0$.
4. Compute the determinant of the following matrices.
(a) $[\mathbf{1}$ point $]\left[\begin{array}{rr}2 & 5 \\ -1 & 3\end{array}\right]$

$$
2 \cdot 3-(-1)(5)=6+5=11
$$

$$
\begin{aligned}
& \text { (b) [1 point] }\left[\begin{array}{rrr}
1 & -1 & 4 \\
1 & 3 & -2 \\
4 & 7 & -1
\end{array}\right] \quad \begin{array}{r}
\text { Soln 1: }: \\
(1)(3)(-1)+(-1)(-2)(4)+(4)(1)(7) \\
-(4)(3)(4)-(7)(-2)(1)-(-1)(1)(-1)=\widetilde{-3+8}+28
\end{array} \\
& \text { Soln 2: }\left[\begin{array}{ccc}
1 & -1 & 4 \\
0 & 4 & -6 \\
0 & 11 & -17
\end{array}\right] \stackrel{3}{\hookrightarrow}\left[\begin{array}{ccc}
1 & -1 & 4 \\
0 & 12 & -18 \\
0 & 11 & -17
\end{array}\right] \rightarrow\left[\begin{array}{ccc}
1 & -1 & 4 \\
0 & 1 & -1 \\
0 & 11 & -17
\end{array}\right] \rightarrow\left[\begin{array}{ccc}
1 & -1 & 4 \\
0 & 1 & -1 \\
0 & 0 & -6
\end{array}\right] \\
& =-20+14-1+5 \\
& =2 \\
& \text { (3) } \operatorname{det}(A)=-6 \Rightarrow \operatorname{det}(A)=-2
\end{aligned}
$$

$$
\begin{aligned}
& \operatorname{det}(A)=(-1)(+1) \operatorname{det}\left[\begin{array}{ccc}
9^{+} & 1 & 4 \\
0 & 4^{+} \\
1 & 0 & 2
\end{array}\right]=-\left((2)(-1) \operatorname{det}\left(\begin{array}{ll}
9 & 1 \\
1 & 3
\end{array}\right)\right)=2(9 \cdot 3-(1)(1))=2(26)=52 \\
& \text { (d) [2 points] }\left[\begin{array}{rrrr}
1 & 1 & 2 & 3 \\
5 & 3 & 2 & 2 \\
-1 & 1 & 3 & 2 \\
-2 & 5 & 2 & 1
\end{array}\right] \rightarrow\left[\begin{array}{cccc}
1 & 1 & 2 & 3 \\
0 & -2 & -8 & -13 \\
0 & 2 & 5 & 5 \\
0 & 7 & 6 & 7
\end{array}\right] \sim\left[\begin{array}{cccc}
1 & 1 & 2 & 3 \\
0 & -2 & -8 & -13 \\
0 & 0 & -3 & -8 \\
0 & 1 & -18 & -32
\end{array}\right] \\
& \xrightarrow{(-1)} \rightarrow\left[\begin{array}{cccc}
1 & 1 & 2 & 3 \\
0 & 1 & -18 & -32 \\
0 & 0 & -3 & -8 \\
0 & -2 & -8 & -13
\end{array}\right] \rightarrow\left[\begin{array}{cccc}
1 & 1 & 2 & 3 \\
0 & 1 & -18 & -32 \\
0 & 0 & -3 & -8 \\
0 & 0 & -44 & -77
\end{array}\right] \stackrel{(-1}{111}\left[\begin{array}{cccc}
1 & 1 & 2 & 3 \\
0 & 1 & -18 & -32 \\
0 & 0 & -3 & -8 \\
0 & 0 & 4 & 7
\end{array}\right] \\
& \rightarrow\left[\begin{array}{cccc}
1 & 1 & 2 & 3 \\
0 & 1 & -18 & -32 \\
0 & 0 & 1 & -1 \\
0 & 0 & 4 & 7
\end{array}\right] \rightarrow\left[\begin{array}{cccc}
1 & 1 & 2 & 3 \\
0 & 1 & -18 & -32 \\
0 & 0 & 1 & -1 \\
0 & 0 & 0 & (11)
\end{array}\right] \\
& \left((-1) \cdot\left(-\frac{1}{11}\right) \cdot \operatorname{det}(A)=11\right. \\
& \operatorname{det}(A)=(11)^{2}=121
\end{aligned}
$$

