Name: _

Directions: Show all work. No credit for answers without work.

- 1. [2 parts, 2 points each] Decide whether the given transformation is linear. Justify your answer.
 - (a) $\begin{bmatrix} x_1 \\ x_2 \end{bmatrix} \mapsto \begin{bmatrix} x_1+1 \\ x_2-1 \end{bmatrix}$

(b)
$$\begin{bmatrix} x_1 \\ x_2 \end{bmatrix} \mapsto \begin{bmatrix} \ln(2)x_1 \\ -x_2 \end{bmatrix}$$
.

2. [1 point] Let $T: \mathbb{R}^n \to \mathbb{R}^m$ be a linear transform, and let $\mathbf{v}_1, \ldots, \mathbf{v}_p$ be vectors in \mathbb{R}^n . Show that if $\{\mathbf{v}_1, \ldots, \mathbf{v}_p\}$ is a linearly dependent set, then $\{T(\mathbf{v}_1), \ldots, T(\mathbf{v}_p)\}$ is linearly dependent.

- 3. [2 parts, 2 points each] Suppose that $T: \mathbb{R}^2 \to \mathbb{R}^3$ is a linear transform, let $\mathbf{u} = \begin{bmatrix} 1 \\ 3 \end{bmatrix}$ and let $\mathbf{v} = \begin{bmatrix} 2 \\ -1 \end{bmatrix}$. We know that T maps \mathbf{u} to $\begin{bmatrix} 1 \\ 2 \\ 3 \end{bmatrix}$ and T maps \mathbf{v} to $\begin{bmatrix} -1 \\ 0 \\ 2 \end{bmatrix}$.
 - (a) Find the image of $2\mathbf{u} \mathbf{v}$ under T.

(b) If possible, then find $T(\mathbf{w})$, where $\mathbf{w} = \begin{bmatrix} 5\\8 \end{bmatrix}$. If not possible, then explain why not.

4. [1 point] Give the standard matrix for the transform $T: \mathbb{R}^2 \to \mathbb{R}^2$ that rotates the plane by 45 degrees counter-clockwise.