Name: \qquad
Directions: Show all work. No credit for answers without work.

1. [2 parts, 2 points each] Decide whether the given transformation is linear. Justify your answer.
(a) $\left[\begin{array}{l}x_{1} \\ x_{2}\end{array}\right] \mapsto\left[\begin{array}{l}x_{1}+1 \\ x_{2}-1\end{array}\right]$
(b) $\left[\begin{array}{l}x_{1} \\ x_{2}\end{array}\right] \mapsto\left[\begin{array}{r}\ln (2) x_{1} \\ -x_{2}\end{array}\right]$.
2. [1 point] Let $T: \mathbb{R}^{n} \rightarrow \mathbb{R}^{m}$ be a linear transform, and let $\mathbf{v}_{1}, \ldots \mathbf{v}_{p}$ be vectors in \mathbb{R}^{n}. Show that if $\left\{\mathbf{v}_{1}, \ldots, \mathbf{v}_{p}\right\}$ is a linearly dependent set, then $\left\{T\left(\mathbf{v}_{1}\right), \ldots, T\left(\mathbf{v}_{p}\right)\right\}$ is linearly dependent.
3. [2 parts, 2 points each] Suppose that $T: \mathbb{R}^{2} \rightarrow \mathbb{R}^{3}$ is a linear transform, let $\mathbf{u}=\left[\begin{array}{l}1 \\ 3\end{array}\right]$ and let $\mathbf{v}=\left[\begin{array}{r}2 \\ -1\end{array}\right]$. We know that T maps \mathbf{u} to $\left[\begin{array}{l}1 \\ 2 \\ 3\end{array}\right]$ and $T \operatorname{maps} \mathbf{v}$ to $\left[\begin{array}{r}-1 \\ 0 \\ 2\end{array}\right]$.
(a) Find the image of $2 \mathbf{u}-\mathbf{v}$ under T.
(b) If possible, then find $T(\mathbf{w})$, where $\mathbf{w}=\left[\begin{array}{l}5 \\ 8\end{array}\right]$. If not possible, then explain why not.
4. [1 point] Give the standard matrix for the transform $T: \mathbb{R}^{2} \rightarrow \mathbb{R}^{2}$ that rotates the plane by 45 degrees counter-clockwise.
