Name: Solutions

Directions: Show all work. No credit for answers without work.

1. [2 parts, 2 points each] Decide whether the given transformation is linear. Justify your answer.

(a)
$$\begin{bmatrix} x_1 \\ x_2 \end{bmatrix} \mapsto \begin{bmatrix} x_1 + 1 \\ x_2 - 1 \end{bmatrix}$$

This transform maps [0] to [6+1] or [-1]. Every linear transform maps the zero vector to the zero vector, so this is not linear.

(b)
$$\begin{bmatrix} x_1 \\ x_2 \end{bmatrix} \mapsto \begin{bmatrix} \ln(2)x_1 \\ -x_2 \end{bmatrix}$$
.

This is linear: $T(\bar{x}) = \begin{bmatrix} \ln(2) \times_1 \\ - \times_2 \end{bmatrix} = \begin{bmatrix} \ln(2) \times_1 + 0 \times_2 \\ 0 \times_1 + (-1) \times_2 \end{bmatrix}$ $= \begin{bmatrix} \ln(2) & 0 \\ 0 & -1 \end{bmatrix} \begin{bmatrix} \times_1 \\ \times_2 \end{bmatrix}.$

Since the transform is a matrix transform with standard metrix [0 -1], [It is linear.]

2. [1 point] Let $T: \mathbb{R}^n \to \mathbb{R}^m$ be a linear transform, and let $\mathbf{v}_1, \dots \mathbf{v}_p$ be vectors in \mathbb{R}^n . Show that if $\{\mathbf{v}_1, \dots, \mathbf{v}_p\}$ is a linearly dependent set, then $\{T(\mathbf{v}_1), \dots, T(\mathbf{v}_p)\}$ is linearly dependent.

Pf. Since $\{\vec{V}_1,...,\vec{V}_p\}$ is line-dependent, there exist weights $W_1,...,W_p$, not all zero, such that $W_1\vec{V}_1+...+W_p\vec{V}_p=\vec{O}$. Since T is linear, we have that $W_1T(\vec{V}_1)+...+W_pT(\vec{V}_p)=T(W_1\vec{V}_1+...+W_p\vec{V}_p)=T(\vec{O})=\vec{O}$. If follows that $W_1T(\vec{V}_1)+...+W_pT(\vec{V}_p)=\vec{O}$ is a dependence relation for $\{T(\vec{V}_1),...,T(\vec{V}_p)\}$, and so $\{T(\vec{V}_1),...,T(\vec{V}_p)\}$ is linearly dependent. \vec{V}_1

- 3. [2 parts, 2 points each] Suppose that $T: \mathbb{R}^2 \to \mathbb{R}^3$ is a linear transform, let $\mathbf{u} = \begin{bmatrix} 1 \\ 3 \end{bmatrix}$ and let $\mathbf{v} = \begin{bmatrix} 2 \\ -1 \end{bmatrix}$. We know that T maps \mathbf{u} to $\begin{bmatrix} 1 \\ 2 \\ 3 \end{bmatrix}$ and T maps \mathbf{v} to $\begin{bmatrix} -1 \\ 0 \\ 2 \end{bmatrix}$.
 - (a) Find the image of $2\mathbf{u} \mathbf{v}$ under T.

$$T(2\vec{a} - \vec{v}) = 2T(\vec{a}) - T(\vec{v}) = 2\begin{bmatrix} 1\\2\\3 \end{bmatrix} - \begin{bmatrix} -1\\0\\2 \end{bmatrix}$$

$$= \begin{bmatrix} 2 & -(-1)\\4 & -6\\6 & -2 \end{bmatrix} = \begin{bmatrix} 3\\4\\4 \end{bmatrix}.$$

(b) If possible, then find $T(\mathbf{w})$, where $\mathbf{w} = \begin{bmatrix} 5 \\ 8 \end{bmatrix}$. If not possible, then explain why not.

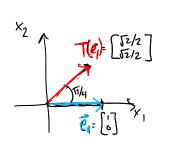
First, try to write \vec{w} as a lin. comb, \vec{q} \vec{u} \vec{w} \vec{v} : \vec{v} \vec{v} Argumented matrix: $\begin{bmatrix} 1 & 2 & 5 \\ 3 & -1 & 8 \end{bmatrix} \rightarrow \begin{bmatrix} 1 & 2 & 5 \\ 0 & -7 & -7 \end{bmatrix} \rightarrow \begin{bmatrix} 1 & 2 & 5 \\ 0 & 1 & 1 \end{bmatrix} \rightarrow \begin{bmatrix} 1 & 0 & 3 \\ 0 & 1 & 1 \end{bmatrix} \Rightarrow \vec{x} = \begin{bmatrix} 3 \\ 1 \end{bmatrix}$

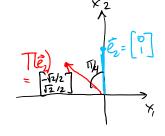
So $\vec{w} = 3\vec{u} + 1\vec{v}$. (Check: $\begin{bmatrix} 5 \\ 3 \end{bmatrix} \stackrel{?}{=} 3\begin{bmatrix} 1 \\ 3 \end{bmatrix} + \begin{bmatrix} 2 \\ -1 \end{bmatrix} \checkmark$)

Therefore $T(\vec{\omega}) = T(3\vec{\omega} + \vec{v}) = 3T(\vec{\omega}) + T(\vec{v}) = 3\begin{bmatrix} 1 \\ 2 \\ 3 \end{bmatrix} + \begin{bmatrix} -1 \\ 0 \\ 2 \end{bmatrix} = \begin{bmatrix} 3 - 1 \\ 6 + 0 \\ 9 + 2 \end{bmatrix} = \begin{bmatrix} 2 \\ 6 \\ 11 \end{bmatrix}$

4. [1 point] Give the standard matrix for the transform $T: \mathbb{R}^2 \to \mathbb{R}^2$ that rotates the plane by

45 degrees counter-clockwise.





45 degrees counter-clockwise.

Std Matrix is
$$\left[T(\vec{e_1}) \ T(\vec{e_2}) \right] = \left[\frac{J_2}{2} \ \frac{J_2}{2} \right] = \left[\frac{J_2}{2} \ \frac{J_$$