Name: \qquad
Directions: Show all work. No credit for answers without work.

1. [2.5 points] Consider the following network.

Express the general solution to this network flow in parametric form.
2. [2.5 points] Determine (with justification) the set of values for h that make $\left\{\mathbf{u}_{1}, \mathbf{u}_{2}, \mathbf{u}_{3}, \mathbf{u}_{4}, \mathbf{u}_{5}, \mathbf{u}_{6}\right\}$ linearly dependent, where

$$
\mathbf{u}_{1}=\left[\begin{array}{r}
2 \\
1 \\
8 \\
5 \\
-1
\end{array}\right] \quad \mathbf{u}_{2}=\left[\begin{array}{l}
0 \\
0 \\
0 \\
0 \\
h
\end{array}\right] \quad \mathbf{u}_{3}=\left[\begin{array}{r}
7 \\
3 \\
-1 \\
2 \\
6
\end{array}\right] \quad \mathbf{u}_{4}=\left[\begin{array}{r}
1 \\
-1 \\
2 \\
1 \\
1
\end{array}\right] \quad \mathbf{u}_{5}=\left[\begin{array}{c}
1 \\
1 \\
1 \\
1 \\
0
\end{array}\right] \quad \mathbf{u}_{6}=\left[\begin{array}{r}
3 \\
0 \\
2 \\
1 \\
-1
\end{array}\right] .
$$

3. [2.5 points] Determine (with justification) whether the columns of the following matrix are linearly dependent.

$$
\left[\begin{array}{rrr}
1 & 2 & -1 \\
2 & -2 & 10 \\
4 & 1 & 10 \\
-1 & 3 & -9
\end{array}\right]
$$

4. [2.5 points] Is there a linearly dependent set of vectors $\{\mathbf{u}, \mathbf{v}, \mathbf{w}\}$ such that $\{\mathbf{u}, \mathbf{v}\},\{\mathbf{u}, \mathbf{w}\}$, and $\{\mathbf{v}, \mathbf{w}\}$ are all linearly independent? Give an example or explain why not.
