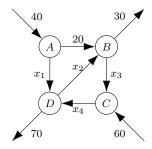
Name: Soluhain

Directions: Show all work. No credit for answers without work.

1. [2.5 points] Consider the following network.



Express the general solution to this network flow in parametric form.

A:
$$40 = 204 \times_1 \implies \times_1 = 20$$

R: $40 = 204 \times_1 \implies \times_2 - \times_3 = 1$

$$\begin{bmatrix} 1 & 0 & 0 & 0 & 20 \\ 0 & 1 & -1 & 0 & 10 \\ 1 & -1 & 0 & 1 & 70 \end{bmatrix} \xrightarrow{3} \begin{bmatrix} 1 & 0 & 0 & 0 & 20 \\ 0 & 1 & -1 & 0 & 10 \\ 0 & 0 & -1 & 1 & 60 \\ 0 & -1 & 0 & 1 & 50 \end{bmatrix} \xrightarrow{X_4 : free} \begin{bmatrix} 20 \\ -50 + x_4 \\ -60 + x_4 \end{bmatrix} = \begin{bmatrix} 20 \\ -50 \\ -60 \end{bmatrix} + 5 \begin{bmatrix} 0 \\ 1 \\ 1 \end{bmatrix},$$

A:
$$40 = 20 + x_1$$
 $\Rightarrow x_1 = 20$

B: $x_2 + 20 = x_3 + 30$ $\Rightarrow x_2 - x_3 = 10$

C: $x_3 + 60 = x_4$ $\Rightarrow -x_3 + x_4 = 60$

D: $x_1 + x_4 = x_2 + 70$ $\Rightarrow x_1 - x_2 + x_4 = 70$
 $x_1 + x_4 = x_4 + 70$ $\Rightarrow x_1 - x_2 + x_4 = 70$

$$X = \begin{bmatrix} 20 \\ -50 + x_4 \\ -60 + x_4 \\ x_4 \end{bmatrix} = \begin{bmatrix} 20 \\ -50 \\ -60 \\ 0 \end{bmatrix} + 5 \begin{bmatrix} 0 \\ 1 \\ 1 \\ 1 \end{bmatrix}, S \in \mathbb{R}$$

2. [2.5 points] Determine (with justification) the set of values for h that make $\{\mathbf{u}_1, \mathbf{u}_2, \mathbf{u}_3, \mathbf{u}_4, \mathbf{u}_5, \mathbf{u}_6\}$ linearly dependent, where

$$\mathbf{u}_{1} = \begin{bmatrix} 2\\1\\8\\5\\-1 \end{bmatrix} \quad \mathbf{u}_{2} = \begin{bmatrix} 0\\0\\0\\h \end{bmatrix} \quad \mathbf{u}_{3} = \begin{bmatrix} 7\\3\\-1\\2\\6 \end{bmatrix} \quad \mathbf{u}_{4} = \begin{bmatrix} 1\\-1\\2\\1\\1 \end{bmatrix} \quad \mathbf{u}_{5} = \begin{bmatrix} 1\\1\\1\\1\\0 \end{bmatrix} \quad \mathbf{u}_{6} = \begin{bmatrix} 3\\0\\2\\1\\-1 \end{bmatrix}.$$

Since $\{\vec{u}_1,...,\vec{u}_6\}$ is a collection of 6 vectors in \mathbb{R}^5 and 6>5, this set is linearly dependent for all h. Indeed, the matrix A with $A=[\vec{u}_1...\vec{u}_6]$ has 6 columns and 5 raws. So at least one column is not a pivot column, implying the honogeness system Ax = o has a free variable and therefore nontrivial solutions

3. [2.5 points] Determine (with justification) whether the columns of the following matrix are linearly dependent.

$$\begin{bmatrix} 1 & 2 & -1 \\ 2 & -2 & 10 \\ 4 & 1 & 10 \\ -1 & 3 & -9 \end{bmatrix}.$$

4. [2.5 points] Is there a linearly dependent set of vectors $\{u, v, w\}$ such that $\{u, v\}$, $\{u, w\}$, and $\{v, w\}$ are all linearly independent? Give an example or explain why not.

Yes. For example, $u = \begin{bmatrix} 1 \\ 0 \end{bmatrix}$, $v = \begin{bmatrix} 0 \\ 1 \end{bmatrix}$, $w = \begin{bmatrix} 1 \\ 1 \end{bmatrix}$. Since $\{u, v, w\}$ is linearly dependent. Since no vector is a scalar multiple of another, the pairs are linearly independent.