Name: _

Directions: Show all work. No credit for answers without work.

- 1. [4 parts, 1 point each] True/False. Justify your answers.
 - (a) Let A be an $(m \times n)$ matrix and let **x** be a vector. The product A**x** is defined only if **x** has size n.
 - (b) If **b** is a linear combination of $\mathbf{a}_1, \ldots, \mathbf{a}_p$, then so is $-\mathbf{b}$.
 - (c) For all vectors \mathbf{u} and \mathbf{v} , the set $\text{Span}\{\mathbf{u}, \mathbf{v}\}$ is bigger than the set $\text{Span}\{\mathbf{u}\}$.
 - (d) In most cases, when we choose two vectors \mathbf{u} and \mathbf{v} from \mathbb{R}^3 , the sets $\text{Span}\{\mathbf{u}\}$ and $\text{Span}\{\mathbf{v}\}$ do not intersect.

2. **[2 points]** For
$$A = \begin{bmatrix} 2 & 5 & -1 \\ 3 & 8 & 2 \\ 1 & 0 & -5 \end{bmatrix}$$
 and $\mathbf{b} = \begin{bmatrix} 18 \\ 24 \\ 11 \end{bmatrix}$, solve $A\mathbf{x} = \mathbf{b}$.

3. [2 parts, 2 points each] Decide whether the vector **b** is a linear combination of the vectors $\mathbf{a}_1, \ldots \mathbf{a}_p$ given below.

(a)
$$\mathbf{a}_1 = \begin{bmatrix} 1\\1\\1 \end{bmatrix}$$
, $\mathbf{a}_2 = \begin{bmatrix} 2\\0\\-3 \end{bmatrix}$, $\mathbf{a}_3 = \begin{bmatrix} 3\\1\\-2 \end{bmatrix}$, $\mathbf{b} = \begin{bmatrix} 4\\6\\9 \end{bmatrix}$

(b)
$$\mathbf{a}_1 = \begin{bmatrix} 1\\5\\2 \end{bmatrix}$$
, $\mathbf{a}_2 = \begin{bmatrix} 7\\3\\-2 \end{bmatrix}$, $\mathbf{a}_3 = \begin{bmatrix} -8\\-2\\3 \end{bmatrix}$, $\mathbf{b} = \begin{bmatrix} 3\\0\\1 \end{bmatrix}$