Name: Solutions
Directions: Show all work. No credit for answers without work.

1. [4 parts, 1 point each] True/False. Justify your answers.
(a) Let A be an $(m \times n)$ matrix and let \mathbf{x} be a vector. The product $A \mathbf{x}$ is defined only if \mathbf{x} has size n.
True. Since A is an $(m \times n)$-matrix, A has m rows and n columns. The product $A \vec{x}$ represents a linear combination of columns of A, with weights fran the components of \vec{x}. So the size of \vec{x} must equal the number of columns of A.
(b) If \mathbf{b} is a linear combination of $\mathbf{a}_{1}, \ldots, \mathbf{a}_{p}$, then so is $-\mathbf{b}$.

$$
\text { True. If } c_{1} \vec{a}_{1}+\cdots+c_{p} \vec{a}_{p}=b_{1} \text {, then }\left(-c_{1}\right) \vec{a}_{1}+\cdots+\left(-c_{p}\right) \vec{a}_{p}=-b \text {. }
$$

(c) For all vectors \mathbf{u} and \mathbf{v}, the set $\operatorname{Span}\{\mathbf{u}, \mathbf{v}\}$ is bigger than the set $\operatorname{Span}\{\mathbf{u}\}_{\mathcal{P}}$ FALSE. For example, if \vec{v} is the zero vector, or if $\vec{v}=\vec{u}$, or if $\vec{v}=c \vec{u}$ for some scalar c, then $\operatorname{Soan}\{\vec{u}\}=\operatorname{Span}\{\vec{u}, \vec{v}\}$.
(d) In most cases, when we choose two vectors \mathbf{u} and \mathbf{v} from \mathbb{R}^{3}, the sets $\operatorname{Span}\{\mathbf{u}\}$ and Span $\{\mathbf{v}\}$ do not intersect.

False. Since the zero vector belongs to the span of every set, $\operatorname{Span}\{\vec{u}\}$ a Span $\{\vec{v}\}$ intersect in at least the zero vector.
2. [2 points] For $A=\left[\begin{array}{rrr}2 & 5 & -1 \\ 3 & 8 & 2 \\ 1 & 0 & -5\end{array}\right]$ and $\mathbf{b}=\left[\begin{array}{l}18 \\ 24 \\ 11\end{array}\right]$, solve $A \mathbf{x}=\mathbf{b}$.

$$
\left[\begin{array}{cccc}
2 & 5 & -1 & 18 \\
3 & 8 & 2 & 24 \\
1 & 0 & -5 & 11
\end{array}\right] \xrightarrow{R 1 \leftrightarrow R 3}\left[\begin{array}{cccc}
1 & 0 & -5 & 11 \\
3 & 8 & 2 & 24 \\
2 & 5 & -1 & 18
\end{array}\right] \xrightarrow{\begin{array}{l}
R 2 \pm(-3) R 1 \\
R 3 \pm(-2) R 1
\end{array}}\left[\begin{array}{cccc}
1 & 0 & -5 & 11 \\
0 & 8 & 17 & -9 \\
0 & 5 & 9 & -4
\end{array}\right]
$$

$$
\underset{\text { (avoid fratias!!) }}{\sim}\left[\begin{array}{cccc}
1 & 0 & -5 & 11 \\
0 & 3 & 8 & -5 \\
0 & 5 & 9 & -4
\end{array}\right] \xrightarrow{R 3 \pm(-1) R^{2}}\left[\begin{array}{cccc}
1 & 0 & -5 & 11 \\
0 & 3 & 8 & -5 \\
0 & 2 & 1 & 1
\end{array}\right] \xrightarrow{R 2 \pm(-1) R^{3}}\left[\begin{array}{cccc}
1 & 0 & -5 & 11 \\
0 & 1 & 7 & -6 \\
0 & 2 & 1 & 1
\end{array}\right]
$$

$$
\xrightarrow{R 3 \pm(-2) R 2}\left[\begin{array}{cccc}
1 & 0 & -5 & 11 \\
0 & 1 & 7 & -6 \\
0 & 0 & -13 & 13
\end{array}\right] \stackrel{R 3 \cdot\left(-\frac{1}{3}\right)}{\sim}\left[\begin{array}{cccc}
1 & 0 & -5 & 11 \\
0 & 1 & 7 & -6 \\
0 & 0 & 1 & -1
\end{array}\right] \stackrel{\substack{R 1 \pm 5 R 3 \\
R 2 \pm(-7 R 3}}{\longrightarrow}\left[\begin{array}{cccc}
1 & 0 & 0 & 6 \\
0 & 1 & 0 & 1 \\
0 & 0 & 1 & -1
\end{array}\right]
$$

$$
\text { So the soln to } A \vec{x}=\vec{b} \quad \text { is } \vec{x}=\left[\begin{array}{c}
6 \\
1 \\
-1
\end{array}\right] \text {. }
$$

3. [2 parts, $\mathbf{2}$ points each] Decide whether the vector \mathbf{b} is a linear combination of the vectors $\mathbf{a}_{1}, \ldots \mathbf{a}_{p}$ given below.
(a) $\mathbf{a}_{1}=\left[\begin{array}{l}1 \\ 1 \\ 1\end{array}\right], \mathbf{a}_{2}=\left[\begin{array}{r}2 \\ 0 \\ -3\end{array}\right], \mathbf{a}_{3}=\left[\begin{array}{r}3 \\ 1 \\ -2\end{array}\right], \mathbf{b}=\left[\begin{array}{l}4 \\ 6 \\ 9\end{array}\right]$

$$
\xrightarrow{2(a)}\left[\begin{array}{cccc}
1 & 2 & 3 & 4 \\
1 & 0 & 1 & 6 \\
1 & -3 & -2 & 9
\end{array}\right] \xrightarrow{\text { R2£(-1)R1}}\left[\begin{array}{cccc}
1 & 2 & 3 & 4 \\
0 & -2 & -2 & 2 \\
0 & -5 & -5 & 5
\end{array}\right] \xrightarrow{\text { RS }(-1) R 1} \begin{aligned}
& R 2 \cdot\left(-\frac{1}{2}\right) \\
& R 3 \cdot\left(-\frac{1}{5}\right)
\end{aligned}\left[\begin{array}{cccc}
1 & 2 & 3 & 4 \\
0 & 1 & 1 & -1 \\
0 & 1 & 1 & -1
\end{array}\right]
$$

$$
\xrightarrow{R 3 \pm(-1) R 2}\left[\begin{array}{cccc}
(1) & 2 & 3 & 4 \\
0 & (1) & 1 & -1 \\
0 & 0 & 0 & 0
\end{array}\right]
$$

Since the last column is not a pinot, the system is consistent and \vec{b} is a lin. comb. of $\vec{a}_{1}, \vec{a}_{2}, \vec{a}_{3}$:
(b) $\mathbf{a}_{1}=\left[\begin{array}{l}1 \\ 5 \\ 2\end{array}\right], \mathbf{a}_{2}=\left[\begin{array}{r}7 \\ 3 \\ -2\end{array}\right], \mathbf{a}_{3}=\left[\begin{array}{r}-8 \\ -2 \\ 3\end{array}\right], \mathbf{b}=\left[\begin{array}{l}3 \\ 0 \\ 1\end{array}\right]$
$2(b)\left[\begin{array}{cccc}1 & 7 & -8 & 3 \\ 5 & 3 & -2 & 0 \\ 2 & -2 & 3 & 1\end{array}\right] \xrightarrow{R 2 \pm(-5) R 1}\left[\begin{array}{cccc}1 & 7 & -8 & 3 \\ 0 & -32 & 38 & -15 \\ 0 & -16 & 19 & -5\end{array}\right] \xrightarrow{\substack{R 2 \leftrightarrow \\ R 2(-1) \\ R 3 \\ R 3 \\(-1) \\ \hline}}\left[\begin{array}{cccc}1 & 7 & -8 & 3 \\ 0 & 16 & -19 & 5 \\ 0 & 32 & -38 & 15\end{array}\right] \xrightarrow{R 3 \pm(-2) R 2}\left[\begin{array}{ccc}(1) & 7 & -8 \\ 0 & (16) & -19 \\ 0 & 0 & 0 \\ 0 & (5)\end{array}\right]$
Since the last column is a pivot, the system is inconsistent and so \vec{b} is not a lin comb. of $\vec{a}_{1}, \vec{a}_{2}, \vec{a}_{3}$, ,

