Name: Solutions

Directions: Show all work. No credit for answers without work.

- 1. [4 parts, 1 point each] True/False. Justify your answers.
- (a) Let A be an $(m \times n)$ matrix and let \mathbf{x} be a vector. The product $A\mathbf{x}$ is defined only if \mathbf{x} has size n.

 True Since A is an $(m \times n)$ -matrix, A has m rows and n columns. The product $A\vec{x}$ represents a linear cambination of columns of A, with weights from the comparable of \vec{x} .

 So the size of \vec{x} must good the number of columns of A.

 (b) If \mathbf{b} is a linear combination of $\mathbf{a}_1, \ldots, \mathbf{a}_p$, then so is $-\mathbf{b}$.

True. If
$$c_1\vec{a}_1 + \cdots + c_p\vec{a}_p = b$$
, then $(-c_1)\vec{a}_1 + \cdots + (-c_p)\vec{a}_p = -b$.

- (c) For all vectors \mathbf{u} and \mathbf{v} , the set $\mathrm{Span}\{\mathbf{u},\mathbf{v}\}$ is bigger than the set $\mathrm{Span}\{\mathbf{u}\}_{\mathcal{V}}$ $\vec{\mathbf{v}}=\vec{\mathbf{u}}$, or $\vec{\mathbf{v}}=\vec{\mathbf{v}}$.
 - (d) In most cases, when we choose two vectors \mathbf{u} and \mathbf{v} from \mathbb{R}^3 , the sets $\mathrm{Span}\{\mathbf{u}\}$ and $\mathrm{Span}\{\mathbf{v}\}$ do not intersect.

False. Since the zero vector belongs to the span of every set, Span $\{\vec{u}\}$ a Span $\{\vec{v}\}$ intersect in at least the zero vector.

2. [2 points] For
$$A = \begin{bmatrix} 2 & 5 & -1 \\ 3 & 8 & 2 \\ 1 & 0 & -5 \end{bmatrix}$$
 and $\mathbf{b} = \begin{bmatrix} 18 \\ 24 \\ 11 \end{bmatrix}$, solve $A\mathbf{x} = \mathbf{b}$.

$$\begin{bmatrix} 2 & 5 & -1 & |8| \\ 3 & 8 & 2 & 24 \\ | & 0 & -5 & |1| \end{bmatrix}$$

$$\begin{bmatrix} 1 & 0 & -5 & |1| \\ 3 & 8 & 2 & 24 \\ 2 & 5 & -1 & |8| \end{bmatrix}$$

$$\begin{bmatrix} 2 & 5 & -1 & |8| \\ 3 & 8 & 2 & 24 \\ 2 & 5 & -1 & |8| \end{bmatrix}$$

$$\begin{bmatrix} 1 & 0 & -5 & |1| \\ 0 & 8 & |7 & -9| \\ 0 & 5 & 9 & -4 \end{bmatrix}$$

So the solute
$$A\vec{x} = \vec{b}$$
 is $\vec{x} = \begin{bmatrix} 6 \\ 1 \\ -1 \end{bmatrix}$.

3. [2 parts, 2 points each] Decide whether the vector b is a linear combination of the vectors $\mathbf{a}_1, \dots \mathbf{a}_p$ given below.

(a)
$$\mathbf{a}_1 = \begin{bmatrix} 1 \\ 1 \\ 1 \end{bmatrix}$$
, $\mathbf{a}_2 = \begin{bmatrix} 2 \\ 0 \\ -3 \end{bmatrix}$, $\mathbf{a}_3 = \begin{bmatrix} 3 \\ 1 \\ -2 \end{bmatrix}$, $\mathbf{b} = \begin{bmatrix} 4 \\ 6 \\ 9 \end{bmatrix}$

P3 \pm (-1)R2 \bigcirc 2 3 4 Since the last column is not a pivot, the system \bigcirc 0 0 0 0 is consistent and \boxed{b} is a line camb $\overrightarrow{a_1}$, $\overrightarrow{a_2}$, $\overrightarrow{a_3}$

(b)
$$\mathbf{a}_1 = \begin{bmatrix} 1 \\ 5 \\ 2 \end{bmatrix}$$
, $\mathbf{a}_2 = \begin{bmatrix} 7 \\ 3 \\ -2 \end{bmatrix}$, $\mathbf{a}_3 = \begin{bmatrix} -8 \\ -2 \\ 3 \end{bmatrix}$, $\mathbf{b} = \begin{bmatrix} 3 \\ 0 \\ 1 \end{bmatrix}$

$$2(6) \begin{bmatrix} 1 & 7 & -8 & 3 \\ 5 & 3 & -2 & 0 \\ 2 & -2 & 3 & 1 \end{bmatrix} \xrightarrow{R2 \pm (-5)R1} \begin{bmatrix} 1 & 7 & -8 & 3 \\ 0 & -32 & 38 & -15 \\ 0 & -16 & 19 & -5 \end{bmatrix} \xrightarrow{R2 \leftrightarrow B3} \begin{bmatrix} 1 & 7 & -8 & 3 \\ 0 & 16 & -19 & 5 \\ 0 & 32 & -38 & 15 \end{bmatrix} \xrightarrow{R3 \pm (-5)R2} \begin{bmatrix} (1) & 7 & -8 & 3 \\ 0 & (1) & -19 & 5 \\ 0 & 0 & 0 & 0 & 0 \end{bmatrix}$$

Since the last column is a pivot, the system is incansistent and so 1 is not a lin comb. of \$\vec{a}_1, \vec{a}_2, \vec{a}_3\vec{b}_3}\$