Name: \qquad
Directions: Show all work. No credit for answers without work.

1. [3 points] Find the general solution of the system with the following augmented matrix.

$$
\left[\begin{array}{rrrrr}
2 & 4 & -1 & 1 & 13 \\
-1 & -2 & 3 & -1 & -14 \\
3 & 6 & 1 & 0 & 7
\end{array}\right]
$$

2. [$\mathbf{2}$ points] Are the two matrices given below row equivalent? Explain why or why not.

$$
A=\left[\begin{array}{ll}
1 & 2 \\
2 & 4
\end{array}\right] \quad B=\left[\begin{array}{ll}
1 & 3 \\
2 & 6
\end{array}\right]
$$

3. [3 points] Find a quadratic polynomial $f(t)=a+b t+c t^{2}$ such that $f(-1)=9, f(1)=5$, and $f^{\prime}(-1)=-4$.
4. [2 parts, 1 point each] Pivot columns and number of solutions.
(a) Suppose that every column in the augmented matrix of a linear system contains a pivot position. What can you conclude about the number of solutions to the system? Explain.
(b) Suppose that every column in the coefficient matrix of a linear system contains a pivot position. What can you conclude about the number of solutions to the system? Explain.
