Name: _____

Directions: Show all work. No credit for answers without work.

1. [2 points] Given y and v below, decompose y as y = cv + z where c is a scalar and $z \cdot v = 0$.

$$\mathbf{y} = \begin{bmatrix} 1\\2\\3 \end{bmatrix} \qquad \qquad \mathbf{v} = \begin{bmatrix} -1\\3\\1 \end{bmatrix}$$

2. [2 parts, 2 points each] Define $\mathbf{v}_1, \mathbf{v}_2, \mathbf{y}$ as follows and let $W = \text{Span}\{\mathbf{v}_1, \mathbf{v}_2\}$.

$$\mathbf{v}_1 = \begin{bmatrix} 2\\ -2\\ 1\\ 3 \end{bmatrix} \qquad \qquad \mathbf{v}_2 = \begin{bmatrix} -1\\ 1\\ 1\\ 1\\ 1 \end{bmatrix} \qquad \qquad \mathbf{y} = \begin{bmatrix} 0\\ 1\\ 2\\ 3 \end{bmatrix}$$

(a) Find $\operatorname{proj}_W(\mathbf{y})$.

(b) Find the distance from \mathbf{y} to W.

3. [1 point] Let W be a subspace of \mathbb{R}^n . Suppose that $\mathbf{y} = \hat{\mathbf{y}}_1 + \mathbf{z}_1 = \hat{\mathbf{y}}_2 + \mathbf{z}_2$ where $\hat{\mathbf{y}}_1, \hat{\mathbf{y}}_2 \in W$ and $\mathbf{z}_1, \mathbf{z}_2 \in W^{\perp}$. Prove that $\hat{\mathbf{y}}_1 = \hat{\mathbf{y}}_2$ and $\mathbf{z}_1 = \mathbf{z}_2$. [Hint: begin with $\hat{\mathbf{y}}_1 - \hat{\mathbf{y}}_2 = \mathbf{z}_2 - \mathbf{z}_1$ and take the dot product with an appropriate vector on both sides.]

- 4. [3 parts, 1 point each] True/False. In the following, A and B are $n \times n$ matrices. Justify your answer.
 - (a) If A has orthogonal columns, then A^T also has orthogonal columns.

(b) A has orthonormal columns if and only if $A^T A = I$.

(c) If A and B have orthonormal columns, then so does AB.