Name: Solutions

Directions: Show all work. No credit for answers without work.

1. [2 points] Given y and v below, decompose y as y = cv + z where c is a scalar and $z \cdot v = 0$.

$$y = \begin{bmatrix} 1 \\ 2 \\ 3 \end{bmatrix} \qquad v = \begin{bmatrix} -1 \\ 3 \\ 1 \end{bmatrix}$$

$$C = \frac{y \cdot v}{v \cdot v} = \frac{(i)(-1) + (2)(3) + (3)(i)}{(-1)^2 + 3^2 + 1^2} = \frac{-1 + 6 + 3}{1 + 9 + 1} = \frac{8}{11}, \quad Z = y - cv = \begin{bmatrix} \frac{1}{2} \\ 3 \end{bmatrix} - \frac{8}{11} \begin{bmatrix} -1 \\ 3 \end{bmatrix}$$

$$= \frac{1}{11} \begin{bmatrix} \frac{11}{22} \\ \frac{1}{33} \end{bmatrix} - \frac{1}{11} \begin{bmatrix} -8 \\ 24 \\ 8 \end{bmatrix} = \frac{1}{11} \begin{bmatrix} 19 \\ -2 \\ 25 \end{bmatrix}$$

$$S = \sqrt{\frac{8}{11}} = \frac{8}{11} = \frac{19}{11} =$$

2. [2 parts, 2 points each] Define $\mathbf{v}_1, \mathbf{v}_2, \mathbf{y}$ as follows and let $W = \text{Span}\{\mathbf{v}_1, \mathbf{v}_2\}$.

$$\mathbf{v}_1 = \begin{bmatrix} 2 \\ -2 \\ 1 \\ 3 \end{bmatrix} \qquad \qquad \mathbf{v}_2 = \begin{bmatrix} -1 \\ 1 \\ 1 \\ 1 \end{bmatrix} \qquad \qquad \mathbf{y} = \begin{bmatrix} 0 \\ 1 \\ 2 \\ 3 \end{bmatrix}$$

(a) Find $\operatorname{proj}_{W}(y)$. Note: $V_{1} \cdot V_{2} = (-2) + (-2) + 1 + 3 = 0$ so $\{\vec{v}_{1}, \vec{v}_{2}\}\$ is an orthogonal basis for W. $\operatorname{prij}_{W} y = C_{1} V_{1} + C_{2} V_{2}$, $C_{1} = \frac{y \cdot V_{1}}{V_{1} \cdot V_{2}}$. $C_{1} = \frac{-2 + 2 + 9}{4 + 4 + 1 + 9} = \frac{9}{18} = \frac{1}{2}$, $C_{2} = \frac{1 + 2 + 3}{1 + 1 + 1} = \frac{6}{4} = \frac{3}{2}$

So
$$y = \frac{1}{2} \begin{bmatrix} 2 \\ -2 \\ 1 \\ 3 \end{bmatrix} + \frac{3}{2} \begin{bmatrix} -1 \\ 1 \\ 1 \end{bmatrix} = \frac{1}{2} \begin{bmatrix} 2 & -3 \\ -2 & +3 \\ 1 & +3 \\ 3 & +3 \end{bmatrix} = \begin{bmatrix} -1 \\ 1 \\ 4 \\ 6 \end{bmatrix}$$

(b) Find the distance from y to W. $\frac{\partial z}{\partial t} = \frac{1}{2} \begin{bmatrix} 1 \\ 1 \\ 4 \end{bmatrix} = \frac{1}{2} \begin{bmatrix} 0 \\ 2 \\ 4 \end{bmatrix} - \begin{bmatrix} -1 \\ 1 \\ 4 \end{bmatrix} = \frac{1}{2} \begin{bmatrix} 1 \\ 1 \\ 6 \end{bmatrix} = \frac{1}{2}$

$$=\frac{1}{\sqrt{2}}=\frac{\sqrt{2}}{2}$$

3. [1 point] Let W be a subspace of \mathbb{R}^n . Suppose that $\mathbf{y} = \hat{\mathbf{y}}_1 + \mathbf{z}_1 = \hat{\mathbf{y}}_2 + \mathbf{z}_2$ where $\hat{\mathbf{y}}_1, \hat{\mathbf{y}}_2 \in W$ and $\mathbf{z}_1, \mathbf{z}_2 \in W^{\perp}$. Prove that $\hat{\mathbf{y}}_1 = \hat{\mathbf{y}}_2$ and $\mathbf{z}_1 = \mathbf{z}_2$. [Hint: begin with $\hat{\mathbf{y}}_1 - \hat{\mathbf{y}}_2 = \mathbf{z}_2 - \mathbf{z}_1$ and take the dot product with an appropriate vector on both sides.]

Since W is a subspace a) $\hat{y}_{1}, \hat{y}_{2} \in W_{1}$ we have $\hat{y}_{1} - \hat{y}_{2} \in W_{1}$. So $\hat{y}_{1} - \hat{y}_{2} = Z_{2} - Z_{1} \implies (\hat{y}_{1} - \hat{y}_{2}) \cdot (\hat{y}_{1} - \hat{y}_{2}) = (Z_{2} - Z_{1}) \cdot (\hat{y}_{1} - \hat{y}_{2})$ $= Z_{2} \cdot (\hat{y}_{1} - \hat{y}_{2}) - Z_{1} \cdot (\hat{y}_{1} - \hat{y}_{2})$ $= O - O = O_{1}$ $= Z_{2} \cdot (\hat{y}_{1} - \hat{y}_{2}) = ((\hat{y}_{1} - \hat{y}_{2}) \cdot (\hat{y}_{1} - \hat{y}_{2}) \cdot (\hat{y}_{1} - \hat{y}_{2})^{1/2}$ $= O - O = O_{1}$ $= O \cdot O = O_{2}$ $= O \cdot O = O_{3}$ $= O \cdot O = O_{3}$

Dec 5, 2022

Since Z_1 and Z_2 are orthogonal to each vertex in W. So $\|\hat{y_1} - \hat{y_2}\|^2 = (|\hat{y_1} - \hat{y_2}| \cdot (\hat{y_1} - \hat{y_2}) \cdot (\hat{y_1} - \hat{y_2}))^{1/2} = 0$ which implies $\hat{y_1} = \hat{y_2}$. So $Z_2 - Z_1 = \hat{y_1} - \hat{y_2} = 0$ at therefore $Z_1 = Z_2$ also.

- 4. [3 parts, 1 point each] True/False. In the following, A and B are $n \times n$ matrices. Justify your answer.
 - (a) If A has orthogonal columns, then A^T also has orthogonal columns.

Folse. For example, if $A = \begin{bmatrix} 1 & 2 \\ 1 & -2 \end{bmatrix}$ then A has orthogonal columns (1)(2) + (1)(-2) = 0 but $A^{T} = \begin{bmatrix} 1 & 1 \\ 2 & -2 \end{bmatrix}$ and so the columns of A^{T} ore not orthogonal $(1)(1) + (2)(-2) = -3 \neq 0$.

(b) A has orthonormal columns if and only if $A^TA = I$.

True: Suppose $A = [v_1 \dots v_n]$. Then the entry of A^TA in the i^{th} row a jth column is $v_i \cdot v_j$. When $\{v_i, \dots, v_n\}$ is an arthonormal set, $v_i \cdot v_j = \{v_i, \dots, v_n\}$ as an a-thonormal set. Which implies $\{v_i, \dots, v_n\}$ is an orthonormal set.

(c) If A and B have orthonormal columns, then so does AB.

True. Since A a) B have orthonormal columns, we have ATA=I a) BTB=I.

So $(AB)^T(AB) = B^TA^TAB = B^TIB = B^TB = I$. Therefore AB also has orthonormal columns,