Name: Solutions
Directions: Show all work. No credit for answers without work.

1. [2 points] Given \mathbf{y} and \mathbf{v} below, decompose \mathbf{y} as $\mathbf{y}=c \mathbf{v}+\mathbf{z}$ where c is a scalar and $\mathbf{z} \cdot \mathbf{v}=\mathbf{0}$.

$$
\begin{aligned}
& y=\left[\begin{array}{l}
1 \\
2 \\
3
\end{array}\right] \quad v=\left[\begin{array}{r}
-1 \\
3 \\
1
\end{array}\right] \\
& c=\frac{y \cdot v}{v \cdot v}=\frac{(1)(-1)+(2)(3)+(3)(1)}{(-1)^{2}+3^{2}+1^{2}}=\frac{-1+6+3}{1+9+1}=\frac{8}{11}, \quad z=y-c v=\left[\begin{array}{c}
1 \\
2 \\
3
\end{array}\right]-\frac{8}{11}\left[\begin{array}{c}
-1 \\
3 \\
1
\end{array}\right] \\
& =\frac{1}{11}\left[\begin{array}{c}
11 \\
22 \\
33
\end{array}\right]-\frac{1}{11}\left[\begin{array}{c}
-8 \\
24 \\
8
\end{array}\right]=\frac{1}{11}\left[\begin{array}{c}
9 \\
-25 \\
25
\end{array}\right] \\
& \text { So } \vec{y}=\frac{-8}{11} \vec{v}+\frac{1}{11}\left[\begin{array}{c}
19 \\
-2 \\
25
\end{array}\right]
\end{aligned}
$$

2. [2 parts, $\mathbf{2}$ points each] Define $\mathbf{v}_{1}, \mathbf{v}_{2}, \mathbf{y}$ as follows and let $W=\operatorname{Span}\left\{\mathbf{v}_{1}, \mathbf{v}_{2}\right\}$.

$$
\mathbf{v}_{1}=\left[\begin{array}{r}
2 \\
-2 \\
1 \\
3
\end{array}\right] \quad \mathbf{v}_{2}=\left[\begin{array}{r}
-1 \\
1 \\
1 \\
1
\end{array}\right] \quad \mathbf{y}=\left[\begin{array}{l}
0 \\
1 \\
2 \\
3
\end{array}\right]
$$

(a) Find $\operatorname{proj}_{W}(\mathbf{y})$. Note: $v_{1} \cdot v_{2}=(-2)+(-2)+1+3=0$ so $\left\{\vec{v}_{1}, \vec{v}_{2}\right\}$ is an orthogonal basis for W. prijw $y=c_{1} v_{1}+c_{2} v_{2}, \quad c_{j}=\frac{y \cdot v_{j}}{v_{j} \cdot v_{j}} . \quad c_{1}=\frac{-2+2+9}{4+4+1+9}=\frac{9}{18}=\frac{1}{2}, \quad c_{2}=\frac{1+2+3}{1+1+1+1}=\frac{6}{4}=\frac{3}{2}$

So $y=\frac{1}{2}\left[\begin{array}{c}2 \\ -2 \\ 1 \\ 3\end{array}\right]+\frac{3}{2}\left[\begin{array}{c}-1 \\ 1 \\ 1 \\ 1\end{array}\right]=\frac{1}{2}\left[\begin{array}{cc}2 & -3 \\ -2+3 \\ 1+3 \\ 3+3\end{array}\right]=\frac{1}{2}\left[\begin{array}{c}-1 \\ 1 \\ 4 \\ 6\end{array}\right]$
(b) Find the distance from y to W.
$\operatorname{dist}(y, w)=\|z\|$, where $z=y-\hat{y}=\left[\begin{array}{l}0 \\ 1 \\ 2 \\ 3\end{array}\right]-\frac{1}{2}\left[\begin{array}{c}-1 \\ 1 \\ 4 \\ 6\end{array}\right]=\frac{1}{2}\left(\left[\begin{array}{c}0 \\ 2 \\ 4 \\ 6\end{array}\right]-\left[\begin{array}{c}-1 \\ 1 \\ 4 \\ 6\end{array}\right]\right)=\frac{1}{2}\left[\begin{array}{l}1 \\ 1 \\ 0 \\ 0\end{array}\right]$

So $\quad\|z\|=(z \cdot z)^{1 / 2}=\left(\left(\frac{1}{2}\right)^{2}+\left(\frac{1}{2}\right)^{2}+0^{2}+0^{2}\right)^{1 / 2}=\left(\frac{1}{4}+\frac{1}{4}+0\right)^{1 / 2}=\left(\frac{1}{2}\right)^{1 / 2}$

$$
=\frac{1}{\sqrt{2}}=\frac{\sqrt{2}}{2}
$$

3. [1 point] Let W be a subspace of \mathbb{R}^{n}. Suppose that $\mathbf{y}=\hat{\mathbf{y}}_{1}+\mathbf{z}_{1}=\hat{\mathbf{y}}_{2}+\mathbf{z}_{2}$ where $\hat{\mathbf{y}}_{1}, \hat{\mathbf{y}}_{2} \in W$ and $\mathbf{z}_{1}, \mathbf{z}_{2} \in W^{\perp}$. Prove that $\hat{\mathbf{y}}_{1}=\hat{\mathbf{y}}_{2}$ and $\mathbf{z}_{1}=\mathbf{z}_{2}$. [Hint: begin with $\hat{\mathbf{y}}_{1}-\hat{\mathbf{y}}_{2}=\mathbf{z}_{2}-\mathbf{z}_{1}$ and take the dot product with an appropriate vector on both sides.]
Since W is a subspace al $\hat{y}_{1}, \hat{y}_{2} \in W$, we have $\hat{y}_{1}-\hat{y}_{2} \in W$. So

$$
\begin{aligned}
\hat{y}_{1}-\hat{y}_{2}=z_{2}-z_{1} \Rightarrow\left(\hat{y}_{1}-\hat{y}_{2}\right) \cdot\left(\hat{y}_{1}-\hat{y}_{2}\right) & =\left(z_{2}-z_{1}\right) \cdot\left(\hat{y}_{1}-\hat{y}_{2}\right) \\
& =z_{2} \cdot\left(\hat{y}_{1}-\hat{y}_{2}\right)-z_{1} \cdot\left(\hat{y}_{1}-\hat{y}_{2}\right) \\
& =0-0=0,
\end{aligned}
$$

since z_{1} ad z_{2} are orthogonal to each vector in W. So $\left\|\hat{y}_{1}-\hat{y}_{2}\right\|=\left(\left(\hat{y}_{1}-\hat{y}_{2}\right) \cdot\left(\hat{y}_{1}-\hat{y}_{2}\right)\right)^{1 / 2}=0$ which implies $\hat{y}_{1}=\hat{y}_{2}$. So $z_{2}-z_{1}=\hat{y}_{1}-\hat{y}_{2}=\overrightarrow{0}$ al therefore $z_{1}=z_{2}$ also.
4. [3 parts, 1 point each] True/False. In the following, A and B are $n \times n$ matrices. Justify your answer.
(a) If A has orthogonal columns, then A^{T} also has orthogonal columns.

False. For example, if $A=\left[\begin{array}{cc}1 & 2 \\ 1 & -2\end{array}\right]$ than A has $\operatorname{arthoganal} \operatorname{colunns}((1)(2)+(1)(-2)=0)$
but $A^{\top}=\left[\begin{array}{cc}1 & 1 \\ 2 & -2\end{array}\right]$ at so the columns of A^{\top} are not orthoganal

$$
((1)(1)+(2)(-2)=-3 \neq 0)
$$

(b) A has orthonormal columns if and only if $A^{T} A=I$.

True: Suppose $A=\left[y_{1} \cdots v_{n}\right]$. The the entry of $A^{\top} A$ in the th now
a) $j^{\text {th }}$ column is $V_{i} \cdot v_{j}$. When $\left\{\vec{v}_{1}, \ldots, \vec{v}_{n}\right\}$ is an orthonormal set, $v_{i} \cdot v_{j}= \begin{cases}1 & f_{i=j} \\ 0 & f_{i} \neq j\end{cases}$
 implies $\left\{v_{1}, \ldots, v_{n}\right\}$ is an orthonormal set.
(c) If A and B have orthonormal columns, then so does $A B$.

True. Since A al B have corhenormal columns, we have $A^{\top} A=I$ a) $B^{\top} B=I$.

$$
\text { So }(A B)^{\top}(A B)=B^{\top} A^{\top} A B=B^{\top} I B=B^{\top} B=I \text {. Therefore } A B
$$

also has orthonormal columns.

